ﻻ يوجد ملخص باللغة العربية
We show that a Bjorken expanding strongly coupled $mathcal{N}=4$ Supersymmetric Yang-Mills plasma can violate the dominant and also the weak energy condition in its approach to hydrodynamics (even though the chosen initial data satisfy these constraints). This suggests that nontrivial quantum effects may be needed to describe the onset of hydrodynamic behavior in heavy-ion collisions. Also, we investigate whether there is an upper bound for the initial entropy of the plasma. We find numerical evidence for such a bound in our simulations and show that close to it the system evolves with approximately zero entropy production at early times, even though it is far from equilibrium.
In this paper we use the gauge/gravity duality to perform the first systematic study of the onset of hydrodynamic behavior in a hot and dense far-from-equilibrium strongly coupled relativistic fluid with a critical point. By employing a top-down holo
The 2D azimuth & rapidity structure of the two-particle correlations in relativistic A+A collisions is altered significantly by the presence of sharp inhomogeneities in superdense matter formed in such processes. The causality constraints enforce one
A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equa
The two component Monte-Carlo Glauber model predicts a knee-like structure in the centrality dependence of elliptic flow $v_2$ in Uranium+Uranium collisions at $sqrt{s_{NN}}=193$ GeV. It also produces a strong anti-correlation between $v_2$ and $dN_{
We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the Color Glass Condensate (CGC) picture. We find that the angular momentum s