ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-periodic oscillations in accreting magnetic white dwarfs II. The asset of numerical modelling for interpreting observations

108   0   0.0 ( 0 )
 نشر من قبل J. M. Bonnet-Bidaud
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Busschaert




اسأل ChatGPT حول البحث

Magnetic cataclysmic variables are close binary systems containing a strongly magnetized white dwarf that accretes matter coming from an M-dwarf companion. High-energy radiation coming from those objects is emitted from the accretion column close to the white dwarf photosphere at the impact region. Its properties depend on the characteristics of the white dwarf and an accurate accretion column model allows the properties of the binary system to be inferred, such as the white dwarf mass, its magnetic field, and the accretion rate. We study the temporal and spectral behaviour of the accretion region and use the tools we developed to accurately connect the simulation results to the X-ray and optical astronomical observations. The radiation hydrodynamics code Hades was adapted to simulate this specific accretion phenomena. Classical approaches were used to model the radiative losses of the two main radiative processes: bremsstrahlung and cyclotron. The oscillation frequencies and amplitudes in the X-ray and optical domains are studied to compare those numerical results to observational ones. Different dimensional formulae were developed to complete the numerical evaluations. The complete characterization of the emitting region is described for the two main radiative regimes: when only the bremsstrahlung losses and when both cyclotron and bremsstrahlung losses are considered. The effect of the non-linear cooling in- stability regime on the accretion column behaviour is analysed. Variation in luminosity on short timescales (~ 1 s quasi-periodic oscillations) is an expected consequence of this specific dynamic. The importance of secondary shock instability on the quasi-periodic oscillation phenomenon is discussed. The stabilization effect of the cyclotron process is confirmed by our numerical simulations, as well as the power distribution in the various modes of oscillation.



قيم البحث

اقرأ أيضاً

Quasi-periodic oscillations (QPOs) are observed in the optical flux of some polars with typical periods of 1 to 3 s but none have been observed yet in X-rays where a significant part of the accreting energy is released. QPOs are expected and predicte d from shock oscillations. Most of the polars have been observed by the XMM-Newton satellite. We made use of the homogeneous set of observations of the polars by XMM-Newton to search for the presence of QPOs in the (0.5-10 keV) energy range and to set significant upper limits for the brightest X-ray polars. We extracted high time-resolution X-ray light curves by taking advantage of the 0.07 sec resolution of the EPIC-PN camera. Among the 65 polars observed with XMM-Newton from 1998 to 2012, a sample of 24 sources was selected on the basis of their counting rate in the PN instrument to secure significant limits. We searched for QPOs using Fast Fourier Transform (FFT) methods and defined limits of detection using statistical tools. Among the sample surveyed, none shows QPOs at a significant level. Upper limits to the fractional flux in QPOs range from 7% to 71%. These negative results are compared to the detailed theoretical predictions of numerical simulations based on a 2D hydrodynamical code presented in Paper II. Cooling instabilities in the accretion column are expected to produce shock quasi-oscillations with a maximum amplitude reaching ~ 40% in the bremsstrahlung (0.5-10 keV) X-ray emission and ~ 20% in the optical cyclotron emission. The absence of X-ray QPOs imposes an upper limit of ~ (5-10) g.cm-2.s-1 on the specific accretion rate but this condition is found inconsistent with the value required to account for the amplitudes and frequencies of the observed optical QPOs. This contradiction outlines probable shortcomings with the shock instability model.
Magnetic fields are important for accretion disc structure. Magnetic fields in a disc system may be transported with the accreted matter. They can be associated with either the central body and/or jet, and be fossil or dynamo excited in situ. We cons ider dynamo excitation of magnetic fields in accretion discs of accreting binary systems in an attempt to clarify possible configurations of dynamo generated magnetic fields. We first model the entire disc with realistic radial extent and thickness using an alpha-quenching non-linearity. We then study the simultaneous effect of feedback from the Lorentz force from the dynamo-generated field. We perform numerical simulations in the framework of a relatively simple mean-field model which allows the generation of global magnetic configurations. We explore a range of possibilities for the dynamo number, and find quadrupolar-type solutions with irregular temporal oscillations that might be compared to observed rapid luminosity fluctuations. The dipolar symmetry models with $R_alpha<0$ have lobes of strong toroidal field adjacent to the rotation axis that could be relevant to jet launching phenomena. We have explored and extended the solutions known for thin accretion discs.
The evolution of the magnetic field of an accreting magnetic white dwarf with an initially dipolar field at the surface has been studied for non-spherical accretion under simplifying assumptions. Accretion on to the polar regions tends to advect the field toward the stellar equator which is then buried. This tendency is countered by Ohmic diffusion and magneto-hydrodynamic instabilities. It is argued that if matter is accreted at a rate of $dot{M}_{rm crit} sim 10^{16}$ g s$^{-1}$ and the total mass accreted exceeds a critical value $Delta M_{rm crit} sim 0.1-0.2ms$, the field may be expected to be restructured, and the polar field to be reduced} reaching a minimum value of $sim 10^3$ G (the bottom field) independently of the initial field strength. Below this critical accretion rate, the field diffuses faster than it can be advected, and accretion has little effect on field strength and structure.
Kilohertz-scale quasi-periodic oscillations (kHz QPOs) are a distinct feature of the variability of neutron star low-mass X-ray binaries. Among all the variability modes, they are especially interesting as a probe for the innermost parts of the accre tion flow, including the accretion boundary layer (BL) on the surface of the neutron star. All the existing models of kHz QPOs explain only part of their rich phenomenology. Here, we show that some of their properties may be explained by a very simple model of the BL that is spun up by accreting rapidly rotating matter from the disk and spun down by the interaction with the neutron star. In particular, if the characteristic time scales for the mass and the angular momentum transfer from the BL to the star are of the same order of magnitude, our model naturally reproduces the so-called parallel tracks effect, when the QPO frequency is correlated with luminosity at time scales of hours but becomes uncorrelated at time scales of days. The closeness of the two time scales responsible for mass and angular momentum exchange between the BL and the star is an expected outcome of the radial structure of the BL.
135 - M. Hernanz , J. Jose (2 2008
Thermonuclear (type Ia) supernovae are explosions in accreting white dwarfs, but the exact scenario leading to these explosions is still unclear. An important step to clarify this point is to understand the behaviour of accreting white dwarfs in clos e binary systems. The characteristics of the white dwarf (mass, chemical composition, luminosity), the accreted material (chemical composition) and those related with the properties of the binary system (mass accretion rate), are crucial for the further evolution towards the explosion. An analysis of the outcome of accretion and the implications for the growth of the white dwarf towards the Chandrasekhar mass and its thermonuclear explosion is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا