ﻻ يوجد ملخص باللغة العربية
Kilohertz-scale quasi-periodic oscillations (kHz QPOs) are a distinct feature of the variability of neutron star low-mass X-ray binaries. Among all the variability modes, they are especially interesting as a probe for the innermost parts of the accretion flow, including the accretion boundary layer (BL) on the surface of the neutron star. All the existing models of kHz QPOs explain only part of their rich phenomenology. Here, we show that some of their properties may be explained by a very simple model of the BL that is spun up by accreting rapidly rotating matter from the disk and spun down by the interaction with the neutron star. In particular, if the characteristic time scales for the mass and the angular momentum transfer from the BL to the star are of the same order of magnitude, our model naturally reproduces the so-called parallel tracks effect, when the QPO frequency is correlated with luminosity at time scales of hours but becomes uncorrelated at time scales of days. The closeness of the two time scales responsible for mass and angular momentum exchange between the BL and the star is an expected outcome of the radial structure of the BL.
When the accretion disc around a weakly magnetised neutron star (NS) meets the stellar surface, it should brake down to match the rotation of the NS, forming a boundary layer. As the mechanisms potentially responsible for this braking are apparently
We report the discovery ($20sigma$) of kilohertz quasi-periodic oscillations (kHz QPOs) at ~ 690 Hz from the transient neutron star low-mass X-ray binary EXO 1745-248. We find that this is a lower kHz QPO, and systematically study the time variation
We analysed all archival RXTE observations of the neutron-star low-mass X-ray binary 4U 1636-53 up to May 2010. In 528 out of 1280 observations we detected kilohertz quasi-periodic oscillations (kHz QPOs), with ~ 65% of these detections corresponding
Inverse Compton scattering dominates the high energy part of the spectra of neutron star (NS) low mass X-ray binaries (LMXBs). It has been proposed that inverse Compton scattering also drives the radiative properties of kilohertz quasi periodic oscil
We study the energy-dependent time lags and rms fractional amplitude of the kilohertz quasi-periodic oscillations (kHz QPOs) of a group of neutron-star low mass X-ray binaries (LMXBs). We find that for the lower kHz QPO the slope of the best-fitting