ترغب بنشر مسار تعليمي؟ اضغط هنا

A review of landmark articles in the field of co-evolutionary computing

128   0   0.0 ( 0 )
 نشر من قبل No\\'e Casas
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Noe Casas




اسأل ChatGPT حول البحث

Coevolution is a powerful tool in evolutionary computing that mitigates some of its endemic problems, namely stagnation in local optima and lack of convergence in high dimensionality problems. Since its inception in 1990, there are multiple articles that have contributed greatly to the development and improvement of the coevolutionary techniques. In this report we review some of those landmark articles dwelving in the techniques they propose and how they fit to conform robust evolutionary algorithms



قيم البحث

اقرأ أيضاً

A key aspect of the design of evolutionary and swarm intelligence algorithms is studying their performance. Statistical comparisons are also a crucial part which allows for reliable conclusions to be drawn. In the present paper we gather and examine the approaches taken from different perspectives to summarise the assumptions made by these statistical tests, the conclusions reached and the steps followed to perform them correctly. In this paper, we conduct a survey on the current trends of the proposals of statistical analyses for the comparison of algorithms of computational intelligence and include a description of the statistical background of these tests. We illustrate the use of the most common tests in the context of the Competition on single-objective real parameter optimisation of the IEEE Congress on Evolutionary Computation (CEC) 2017 and describe the main advantages and drawbacks of the use of each kind of test and put forward some recommendations concerning their use.
We create a novel optimisation technique inspired by natural ecosystems, where the optimisation works at two levels: a first optimisation, migration of genes which are distributed in a peer-to-peer network, operating continuously in time; this proces s feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. We consider from the domain of computer science distributed evolutionary computing, with the relevant theory from the domain of theoretical biology, including the fields of evolutionary and ecological theory, the topological structure of ecosystems, and evolutionary processes within distributed environments. We then define ecosystem- oriented distributed evolutionary computing, imbibed with the properties of self-organisation, scalability and sustainability from natural ecosystems, including a novel form of distributed evolu- tionary computing. Finally, we conclude with a discussion of the apparent compromises resulting from the hybrid model created, such as the network topology.
191 - G Briscoe 2012
We start with a discussion of the relevant literature, including Nature Inspired Computing as a framework in which to understand this work, and the process of biomimicry to be used in mimicking the necessary biological processes to create Digital Eco systems. We then consider the relevant theoretical ecology in creating the digital counterpart of a biological ecosystem, including the topological structure of ecosystems, and evolutionary processes within distributed environments. This leads to a discussion of the relevant fields from computer science for the creation of Digital Ecosystems, including evolutionary computing, Multi-Agent Systems, and Service-Oriented Architectures. We then define Ecosystem-Oriented Architectures for the creation of Digital Ecosystems, imbibed with the properties of self-organisation and scalability from biological ecosystems, including a novel form of distributed evolutionary computing.
Benchmarking plays an important role in the development of novel search algorithms as well as for the assessment and comparison of contemporary algorithmic ideas. This paper presents common principles that need to be taken into account when consideri ng benchmarking problems for constrained optimization. Current benchmark environments for testing Evolutionary Algorithms are reviewed in the light of these principles. Along with this line, the reader is provided with an overview of the available problem domains in the field of constrained benchmarking. Hence, the review supports algorithms developers with information about the merits and demerits of the available frameworks.
Optimization for deep networks is currently a very active area of research. As neural networks become deeper, the ability in manually optimizing the network becomes harder. Mini-batch normalization, identification of effective respective fields, mome ntum updates, introduction of residual blocks, learning rate adoption, etc. have been proposed to speed up the rate of convergent in manual training process while keeping the higher accuracy level. However, the problem of finding optimal topological structure for a given problem is becoming a challenging task need to be addressed immediately. Few researchers have attempted to optimize the network structure using evolutionary computing approaches. Among them, few have successfully evolved networks with reinforcement learning and long-short-term memory. A very few has applied evolutionary programming into deep convolution neural networks. These attempts are mainly evolved the network structure and then subsequently optimized the hyper-parameters of the network. However, a mechanism to evolve the deep network structure under the techniques currently being practiced in manual process is still absent. Incorporation of such techniques into chromosomes level of evolutionary computing, certainly can take us to better topological deep structures. The paper concludes by identifying the gap between evolutionary based deep neural networks and deep neural networks. Further, it proposes some insights for optimizing deep neural networks using evolutionary computing techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا