ﻻ يوجد ملخص باللغة العربية
We investigate an unconventional nature of the entropy production (EP) in nonequilibrium systems with odd-parity variables that change signs under time reversal. We consider the Brownian motion of a particle in contact with a heat reservoir, where particle momentum is an odd-parity variable. In the presence of an {it external} momentum-dependent force, the EP transferred to environment is found {em not} equivalent to usual reservoir entropy change due to heat transfer. There appears an additional unconventional contribution to the EP, which is crucial for maintaining the non-negativity of the (average) total EP enforced by the thermodynamic second law. A few examples are considered to elucidate the novel nature of the EP. We also discuss detailed balance conditions with a momentum-dependent force.
A rigorous derivation of nonequilibrium entropy production via the path-integral formalism is presented. Entropy production is defined as the entropy change piled in a heat reservoir as a result of a nonequilibrium thermodynamic process. It is a cent
We study critical Casimir forces (CCF) $f_{mathrm C}$ for films of thickness $L$ which in the three-dimensional bulk belong to the Ising universality class and which are exposed to random surface fields (RSF) on both surfaces. We consider the case th
We investigate the time evolution of the entropy for a paradigmatic conservative dynamical system, the standard map, for different values of its controlling parameter $a$. When the phase space is sufficiently ``chaotic (i.e., for large $|a|$), we rep
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d
We study the entropy production rate in systems described by linear Langevin equations, containing mixed even and odd variables under time reversal. Exact formulas are derived for several important quantities in terms only of the means and covariance