ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy production in linear Langevin systems

161   0   0.0 ( 0 )
 نشر من قبل Gabriel Landi Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the entropy production rate in systems described by linear Langevin equations, containing mixed even and odd variables under time reversal. Exact formulas are derived for several important quantities in terms only of the means and covariances of the random variables in question. These include the total rate of change of the entropy, the entropy production rate, the entropy flux rate and the three components of the entropy production. All equations are cast in a way suitable for large-scale analysis of linear Langevin systems. Our results are also applied to different types of electrical circuits, which suitably illustrate the most relevant aspects of the problem.



قيم البحث

اقرأ أيضاً

Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the d istribution of entropy production can be obtained analytically, but in general it is much harder. A recent development in solving the Fokker-Planck equation, in which the solution is written as a product of positive functions, enables the distribution to be obtained approximately, with the assistance of simple numerical techniques. Using examples in one and higher dimension, we demonstrate how such a framework is very convenient for the computation of stochastic entropy production in diffusion processes.
The entropy production rate (EPR) offers a quantitative measure of time reversal symmetry breaking in non-equilibrium systems. It can be defined either at particle level or at the level of coarse-grained fields such as density; the EPR for the latter quantifies the extent to which these coarse-grained fields behave irreversibly. In this work, we first develop a general method to compute the EPR of scalar Langevin field theories with additive noise. This large class of theories includes acti
The entropy production is one of the most essential features for systems operating out of equilibrium. The formulation for discrete-state systems goes back to the celebrated Schnakenbergs work and hitherto can be carried out when for each transition between two states also the reverse one is allowed. Nevertheless, several physical systems may exhibit a mixture of both unidirectional and bidirectional transitions, and how to properly define the entropy production in this case is still an open question. Here, we present a solution to such a challenging problem. The average entropy production can be consistently defined, employing a mapping that preserves the average fluxes, and its physical interpretation is provided. We describe a class of stochastic systems composed of unidirectional links forming cycles and detailed-balanced bidirectional links, showing that they behave in a pseudo-deterministic fashion. This approach is applied to a system with time-dependent stochastic resetting. Our framework is consistent with thermodynamics and leads to some intriguing observations on the relation between the arrow of time and the average entropy production for resetting events.
We introduce and analyze the notion of mutual entropy-production (MEP) in autonomous systems. Evaluating MEP rates is in general a difficult task due to non-Markovian effects. For bipartite systems, we provide closed expressions in various limiting r egimes which we verify using numerical simulations. Based on the study of a biochemical and an electronic sensing model, we suggest that the MEP rates provide a relevant measure of the accuracy of sensing.
We study the entropy production in non-equilibrium quantum systems without dissipation, which is generated exclusively by the spontaneous breaking of time-reversal invariance. Systems which preserve the total energy and particle number and are in con tact with two heat reservoirs are analysed. Focussing on point-like interactions, we derive the probability distribution induced by the entropy production operator. We show that all its moments are positive in the zero frequency limit. The analysis covers both Fermi and Bose statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا