ترغب بنشر مسار تعليمي؟ اضغط هنا

Search of primary cosmic rays sources at 5x10**13 - 5x10**14 eV with Tien Shan CHRONOTRON - KLARA array

129   0   0.0 ( 0 )
 نشر من قبل Elena Gudkova N
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The primary cosmic ray sources are searched by means of CHRONOTRON - KLARA separate array of the P.N. Lebedev Physical Institute Tien Shan station. It was done on the base of 35 millions observed PCR extensive air showers from 5x10**13 to 5x10**14 eV energies. The data analysis was carried on the method of the direct selection of local areas in equatorial coordinates where the deviation of event numbers exceeded the definite value from normal Gaussian standard. These directions are compared with other arrays observed results and with coordinates of astrophysical sources.



قيم البحث

اقرأ أيضاً

The energy spectrum of primary cosmic rays at energies between at 2x10$^{13}$ - 3x10$^{17}$ eV is presented according to data from the Tien Shan array on the basis of the detection of the number of electrons in extensive air showers. In the energy ra nge 5x10$^{15}$ - 3x10$^{17}$ eV, the spectrum was obtained by means of the HADRON array and was extended to the region of lower energies from 2x10$^{13}$ eV on the basis of the results of an individual experiment. The changes in the slope of the spectrum in the energy range of 10$^{16}$ - 3x10$^{17}$ eV and a feature of this spectrum at about 1017 eV are analyzed in detail and are described. The spectrum in question is compared with the results obtained at some other arrays.
The events of multiple neutron production under 2000g/cm$^2$ thick rock absorber were studied at the Tien~Shan mountain cosmic ray station, at the altitude of 3340m above the sea level. From comparison of the experimental and Geant4 simulated neutron multiplicity spectra it follows that the great bulk of these events can be explained by interaction of cosmic ray muons with internal material of the neutron detector. In synchronous operation of the underground neutron monitor with the Tien~Shan shower detector system it was found that the characteristics of the muonic component of extensive air showers which is seemingly responsible for generation of the neutron events underground do change noticeably within the energy range of the knee of primary cosmic ray spectrum. Some peculiar shower events were detected when the neutron signal reveals itself only $sim$(100--1000),$mu$s after the passage of the shower particles front which probably means an existence of corresponding delay of the muon flux in such events.
Anisotropy in the arrival direction distribution of ultrahigh-energy cosmic rays (UHECRs) produced by powerful sources is numerically evaluated. We show that, taking account of the Galactic magnetic field, nondetection of significant anisotropy at $a pprox 10^{19}$ eV at present and in future experiments imposes general upper limits on UHECR proton luminosity of steady sources as a function of source redshifts. The upper limits constrain the existence of typical steady sources in the local universe and limit the local density of $10^{19}$ eV UHECR sources to be $gtrsim 10^{-3}$ Mpc$^{-3},$ assuming average intergalactic magnetic fields less than $10^{-9}$ G. This isotropy, which is stronger than measured at the highest energies, may indicate the transient generation of UHECRs. Our anisotropy calculations are applied for extreme high-frequency-peaked BL Lac objects 1ES 0229+200, 1ES 1101-232, and 1ES 0347-121, to test the UHECR-induced cascade model, in which beamed UHECR protons generate TeV radiation in transit from sources. While the magnetic-field structure surrounding the sources affects the required absolute cosmic-ray luminosity of the blazars, the magnetic-field structure surrounding the Milky Way directly affects the observed anisotropy. If both of the magnetic fields are weak enough, significant UHECR anisotropy from these blazars should be detectable by the Pierre Auger Observatory unless the maximum energy of UHECR protons is well below $10^{19}$ eV. Furthermore, if these are the sources of UHECRs above $10^{19}$ eV, a local magnetic structure surrounding the Milky Way is needed to explain the observed isotropy at $sim 10^{19}$ eV, which may be incompatible with large magnetic structures around all galaxies for the UHECR-induced cascade model to work with reasonable jet powers.
The aim of the Yakutsk array enhancement project is to create an instrument to study the highest-energy galactic cosmic rays (CRs) -- their sources, energy spectrum, and mass composition. Additionally, there will be unique capabilities for investigat ions in the transition region between galactic and extragalactic components of CRs. Using the well-developed imaging atmospheric Cherenkov telescope technique adapted to the energy region $E>10^{15}$ eV, we plan to measure the longitudinal structure parameters of the shower, e.g., angular and temporal distributions of the Cherenkov signal related to $X_{max}$ and the mass composition of CRs. The main advantages of the Yakutsk array, such as its multi-component measurements of extensive air showers, and model-independent CR energy estimation based on Cherenkov light measurements, will be inherited by the instrument to be created.
65 - Tim Huege 2019
The Auger Engineering Radio Array (AERA) complements the Pierre Auger Observatory with 150 radio-antenna stations measuring in the frequency range from 30 to 80 MHz. With an instrumented area of 17 km$^2$, the array constitutes the largest cosmic-ray radio detector built to date, allowing us to do multi-hybrid measurements of cosmic rays in the energy range of 10$^{17}$ eV up to several 10$^{18}$ eV. We give an overview of AERA results and discuss the significance of radio detection for the validation of the energy scale of cosmic-ray detectors as well as for mass-composition measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا