ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Dirac topological surface states in (SnTe)$_{ngeq2}$(Bi$_2$Te$_3$)$_{m=1}$

137   0   0.0 ( 0 )
 نشر من قبل Sergey Eremeev
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new type of topological spin-helical surface states was discovered in layered van der Waals bonded (SnTe)$_{n=2,3}$(Bi$_2$Te$_3$)$_{m=1}$ compounds which comprise two covalently bonded band inverted subsystems, SnTe and Bi$_2$Te$_3$, within a building block. This novel topological states demonstrate non-Dirac dispersion within the band gap. The dispersion of the surface state has two linear sections of different slope with shoulder feature between them. Such a dispersion of the topological surface state enables effective switch of the velocity of topological carriers by means of applying an external electric field.



قيم البحث

اقرأ أيضاً

87 - Yong Hu , Lixuan Xu , Mengzhu Shi 2019
In the newly discovered magnetic topological insulator MnBi$_2$Te$_4$, both axion insulator state and quantized anomalous Hall effect (QAHE) have been observed by tuning the magnetic structure. The related (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heter ostructures with increased tuning knobs, are predicted to be a more versatile platform for exotic topological states. Here, we report angle-resolved photoemission spectroscopy (ARPES) studies on a series of the heterostructures (MnBi$_2$Te$_4$, MnBi$_4$Te$_7$ and MnBi$_6$Te$_{10}$). A universal gapless Dirac cone is observed at the MnBi$_2$Te$_4$ terminated (0001) surfaces in all systems. This is in sharp contrast to the expected gap from the original antiferromagnetic ground state, indicating an altered magnetic structure near the surface, possibly due to the surface termination. In the meantime, the electron band dispersion of the surface states, presumably dominated by the top surface, is found to be sensitive to different stackings of the underlying MnBi$_2$Te$_4$ and Bi$_2$Te$_3$ layers. Our results suggest the high tunability of both magnetic and electronic structures of the topological surface states in (MnBi$_2$Te$_4$)$_m$(Bi$_2$Te$_3$)$_n$ heterostructures, which is essential in realizing various novel topological states.
Topological surface states with intrinsic magnetic ordering in the MnBi$_2$Te$_4$(Bi$_2$Te$_3$)$_n$ compounds have been predicted to host rich topological phenomena including quantized anomalous Hall effect and axion insulator state. Here we use scan ning tunneling microscopy to image the surface Dirac fermions in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$. We have determined the energy dispersion and helical spin texture of the surface states through quasiparticle interference patterns far above Dirac energy, which confirms its topological nature. Approaching the Dirac point, the native defects in the MnBi$_2$Te$_4$ septuple layer give rise to resonance states which extend spatially and potentially hinder the detection of a mass gap in the spectra. Our results demonstrate that regulating defects is essential to realize exotic topological states at higher temperatures in these compounds.
Quasi-1D nanowires of topological insulators are emerging candidate structures in superconductor hybrid architectures for the realization of Majorana fermion based quantum computation schemes. It is however technically difficult to both fabricate as well as identify the 1D limit of topological insulator nanowires. Here, we investigated selectively-grown Bi$_2$Te$_3$ topological insulator nanoribbons and nano Hall bars at cryogenic temperatures for their topological properties. The Hall bars are defined in deep-etched Si$_3$N$_4$/SiO$_2$ nano-trenches on a silicon (111) substrate followed by a selective area growth process via molecular beam epitaxy. The selective area growth is beneficial to the device quality, as no subsequent fabrication needs to be performed to shape the nanoribbons. Transmission line measurements are performed to evaluate contact resistances of Ti/Au contacts applied as well as the specific resistance of the Bi$_2$Te$_3$ binary topological insulator. In the diffusive transport regime of these unintentionally $n$-doped Bi$_2$Te$_3$ topological insulator nano Hall bars, we identify distinguishable electron trajectories by analyzing angle-dependent universal conductance fluctuation spectra. When the sample is tilted from a perpendicular to a parallel magnetic field orientation, these high frequent universal conductance fluctuations merge with low frequent Aharonov-Bohm type oscillations originating from the topologically protected surface states encircling the nanoribbon cross section. For 500 nm wide Hall bars we also identify low frequent Shubnikov-de Haas oscillations in the perpendicular field orientation, that reveal a topological high-mobility 2D transport channel, partially decoupled from the bulk of the material.
We have investigated the optical properties of thin films of topological insulators Bi$_{2}$Te$_{3}$, Bi$_{2}$Se$_{3}$ and their alloys Bi$_2$(Te$_{1-x}$Se$_x$)$_3$ on BaF$_{2}$ substrates by a combination of infrared ellipsometry and reflectivity in the energy range from 0.06 to 6.5 eV. For the onset of interband absorption in Bi$_2$Se$_3$, after the correction for the Burstein-Moss effect, we find the value of direct bandgap of $215pm10$ meV at 10 K. Our data supports the picture that Bi$_2$Se$_3$ has a direct band gap located at the $Gamma$ point in the Brillouin zone and that the valence band reaches up to the Dirac point and has the shape of a downward oriented paraboloid, i.e. without a camel-back structure. In Bi$_2$Te$_3$, the onset of strong direct interband absorption at 10 K is at a similar energy of about 200 meV, with a weaker additional feature at about 170 meV. Our data support the recent GW band structure calculations suggesting that the direct interband transition does not occur at the $Gamma$ point but near the Z-F line of the Brillouin zone. In the Bi$_2$(Te$_{1-x}$Se$_x$)$_3$ alloy, the energy of the onset of direct interband transitions exhibits a maximum near $x=0.3$ (i.e. the composition of Bi$_2$Te$_2$Se), suggesting that the crossover of the direct interband transitions between the two points in the Brillouin zone occurs close to this composition.
We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi$_2$Se$_3$ topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify t he effects of inversion-symmetry and time-reversal-symmetry breaking on the electronic states in the vicinity of the Dirac point. In agreement with experiments, we find evidence that the Mn ion is in the ${+2}$-valence state and introduces an acceptor in the bulk band gap. The Mn-acceptor has predominantly $p$-character, and is localized mainly around the Mn impurity and its nearest-neighbor Se atoms. Its electronic structure and spin-polarization are determined by the hybridization between the Mn $d$-levels and the $p$-levels of surrounding Se atoms, which is strongly affected by electronic correlations at the Mn site. The opening of the gap at the Dirac point depends crucially on the quasi-resonant coupling and the strong real-space overlap between the spin-chiral surface states and the mid-gap spin-polarized Mn-acceptor states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا