ﻻ يوجد ملخص باللغة العربية
We present a classical interactive protocol that verifies the validity of a quantum witness state for the local Hamiltonian problem. It follows from this protocol that approximating the non-local value of a multi-player one-round game to inverse polynomial precision is QMA-hard. Our work makes an interesting connection between the theory of QMA-completeness and Hamiltonian complexity on one hand and the study of non-local games and Bell inequalities on the other.
We present a protocol that transforms any quantum multi-prover interactive proof into a nonlocal game in which questions consist of logarithmic number of bits and answers of constant number of bits. As a corollary, this proves that the promise proble
We identify a formal connection between physical problems related to the detection of separable (unentangled) quantum states and complexity classes in theoretical computer science. In particular, we show that to nearly every quantum interactive proof
Quantum state verification provides an efficient approach to characterize the reliability of quantum devices for generating certain target states. The figure of merit of a specific strategy is the estimated infidelity $epsilon$ of the tested state to
In this paper, we extend the protocol of classical verification of quantum computations (CVQC) recently proposed by Mahadev to make the verification efficient. Our result is obtained in the following three steps: $bullet$ We show that parallel repe
In a recent breakthrough, Mahadev constructed a classical verification of quantum computation (CVQC) protocol for a classical client to delegate decision problems in BQP to an untrusted quantum prover under computational assumptions. In this work, we