ﻻ يوجد ملخص باللغة العربية
We explore the degeneracy and discreteness problems in the standard cosmological model (Lambda CDM). We use the Observational Hubble Data (OHD) and the type Ia supernova (SNe Ia) data to study this issue. In order to describe the discreteness in fitting of data, we define a factor G to test the influence from each single data point and analyze the goodness of G. Our results indicate that a higher absolute value of G shows a better capability of distinguishing models, which means the parameters are restricted into smaller confidence intervals with a larger figure of merit evaluation. Consequently, we claim that the factor G is an effective way in model differentiation when using different models to fit the observational data.
The key probes of the growth of large-scale structure are its rate $f$ and amplitude $sigma_8$. Redshift space distortions in the galaxy power spectrum allow us to measure only the combination $fsigma_8$, which can be used to constrain the standard c
We study cosmological models with interaction between dark energy (DE) and dark matter (DM). For the interaction term $Q$ in cosmic evolution equations, there is a model-independent degeneracy-breaking (D-B) point when $Q_{1}$ (a part of $Q$) equals
Accurate cosmological parameter estimates using polarization data of the cosmic microwave background (CMB) put stringent requirements on map calibration, as highlighted in the recent results from the Planck satellite. In this paper, we point out that
Current cosmological tensions motivate investigating extensions to the standard $Lambda$CDM model. Additional model parameters are typically varied one or two at a time, in a series of separate tests. The purpose of this paper is to highlight that in
We study the matter density fluctuations in the running cosmological constant (RCC) model using linear perturbations in the longitudinal gauge. Using this observable we calculate the growth rate of structures and the matter power spectrum, and compar