ﻻ يوجد ملخص باللغة العربية
The key probes of the growth of large-scale structure are its rate $f$ and amplitude $sigma_8$. Redshift space distortions in the galaxy power spectrum allow us to measure only the combination $fsigma_8$, which can be used to constrain the standard cosmological model or alternatives. By using measurements of the galaxy-galaxy lensing cross-correlation spectrum or of the galaxy bispectrum, it is possible to break the $fsigma_8$ degeneracy and obtain separate estimates of $f$ and $sigma_8$ from the same galaxy sample. Currently there are only a handful of such separate measurements, but even this allows for improved constraints on cosmological models. We explore how having a larger and more precise sample of such measurements in the future could constrain further cosmological models. We consider what can be achieved by a future nominal sample that delivers a $sim 1%$ constraint on $f$ and $sigma_8$ separately, compared to the case with a similar precision on the combination $fsigma_8$. For the six cosmological parameters of $Lambda$CDM, we find improvements of $sim! 5$--$50%$ on their constraints. For modified gravity models in the Horndeski class, the improvements on these standard parameters are $sim! 0$--$15%$. However, the precision on the sum of neutrino masses improves by 65% and there is a significant increase in the precision on the background and perturbation Horndeski parameters.
Reconstructing the expansion history of the Universe from type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, $Omega_mathrm{m},gamma$, and $sigma_8$. The cons
Accurate cosmological parameter estimates using polarization data of the cosmic microwave background (CMB) put stringent requirements on map calibration, as highlighted in the recent results from the Planck satellite. In this paper, we point out that
We show how to improve constraints on Omega_m, sigma_8, and the dark-energy equation-of-state parameter, w, obtained by Mantz et al. (2008) from measurements of the X-ray luminosity function of galaxy clusters, namely MACS, the local BCS and the REFL
We study cosmological models with interaction between dark energy (DE) and dark matter (DM). For the interaction term $Q$ in cosmic evolution equations, there is a model-independent degeneracy-breaking (D-B) point when $Q_{1}$ (a part of $Q$) equals
We examine bounds on adiabatic and isocurvature density fluctuations from $mu$-type spectral distortions of the cosmic microwave background (CMB). Studies of such distortion are complementary to CMB measurements of the spectral index and its running,