ترغب بنشر مسار تعليمي؟ اضغط هنا

Correcting systematic polarization effects in Keck LRISp spectropolarimetry to <0.05%

59   0   0.0 ( 0 )
 نشر من قبل David Harrington
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spectropolarimetric measurements at moderate spectral resolutions are effective tracers of stellar magnetic fields and circumstellar environments when signal to noise ratios (SNRs) above 2000 can be achieved. The LRISp spectropolarimeter is capable of achieving these SNRs on faint targets with the 10m aperture of the Keck telescope, provided several instrumental artifacts can be suppressed. We describe here several methods to overcome instrumental error sources that are required to achieve these high SNRs on LRISp. We explore high SNR techniques such as defocusing and slit-stepping during integration with high spectral and spatial oversampling. We find that the instrument flexure and interference fringes introduced by the achromatic retarders create artificial signals at 0.5% levels in the red channel which mimic real stellar signals and limit the sensitivity and calibration stability of LRISp. Careful spectral extraction and data filtering algorithms can remove these error sources. For faint targets and long exposures, cosmic ray hits are frequent and present a major limitation to the upgraded deep depletion red-channel CCD. These must be corrected to the same high SNR levels, requiring careful spectral extraction using iterative filtering algorithms. We demonstrate here characterization of these sources of instrumental polarization artifacts and present several methods used to successfully overcome these limitations. We have measured the linear to circular cross-talk and find it to be roughly 5%, consistent with the known instrument limitations. We show spectropolarimetric signals on brown dwarfs are clearly detectable at 0.2% amplitudes with sensitivities better than 0.05% at full spectral sampling in atomic and molecular bands. Future LRISp users can perform high sensitivity observations with high quality calibration when following the described algorithms.


قيم البحث

اقرأ أيضاً

The prospects for accomplishing x-ray polarization measurements of astronomical sources have grown in recent years, after a hiatus of more than 37 years. Unfortunately, accompanying this long hiatus has been some confusion over the statistical uncert ainties associated with x-ray polarization measurements of these sources. We have initiated a program to perform the detailed calculations that will offer insights into the uncertainties associated with x-ray polarization measurements. Here we describe a mathematical formalism for determining the 1- and 2-parameter errors in the magnitude and position angle of x-ray (linear) polarization in the presence of a (polarized or unpolarized) background. We further review relevant statistics-including clearly distinguishing between the Minimum Detectable Polarization (MDP) and the accuracy of a polarization measurement.
The Simons Observatory (SO) will observe the temperature and polarization anisotropies of the cosmic microwave background (CMB) over a wide range of frequencies (27 to 270 GHz) and angular scales by using both small (0.5 m) and large (6 m) aperture t elescopes. The SO small aperture telescopes will target degree angular scales where the primordial B-mode polarization signal is expected to peak. The incoming polarization signal of the small aperture telescopes will be modulated by a cryogenic, continuously-rotating half-wave plate (CRHWP) to mitigate systematic effects arising from slowly varying noise and detector pair-differencing. In this paper, we present an assessment of some systematic effects arising from using a CRHWP in the SO small aperture systems. We focus on systematic effects associated with structural properties of the HWP and effects arising when operating a HWP, including the amplitude of the HWP synchronous signal (HWPSS), and I -> P (intensity to polarization) leakage that arises from detector non-linearity in the presence of a large HWPSS. We demonstrate our ability to simulate the impact of the aforementioned systematic effects in the time domain. This important step will inform mitigation strategies and design decisions to ensure that SO will meet its science goals.
We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear p olarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were <0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirmed that the PMU has the sufficient performance and function for CLASP.
The detection of the primordial $B$-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this paper we present a complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We employ two different methods for obtaining the power spectra from mock data produced by simulated observations: the maximum likelihood method and the method of Gibbs sampling. We show that the results from both methods are consistent with each other, as well as, within a factor of 6, with analytical estimates. Several categories of systematic errors are considered: instrumental errors, consisting of antenna gain and antenna coupling errors, and beam errors, consisting of antenna pointing errors, beam cross-polarization and beam shape (and size) errors. In order to recover the tensor-to-scalar ratio, $r$, within a 10% tolerance level, which ensures the experiment is sensitive enough to detect the $B$-signal at $r=0.01$ in the multipole range $28 < ell < 384$, we find that, for a QUBIC-like experiment, Gaussian-distributed systematic errors must be controlled with precisions of $|g_{rms}| = 0.1$ for antenna gain, $|epsilon_{rms}| = 5 times 10^{-4}$ for antenna coupling, $delta_{rms} approx 0.7^circ$ for pointing, $zeta_{rms} approx 0.7^circ$ for beam shape, and $mu_{rms} = 5 times 10^{-4}$ for beam cross-polarization.
The most accessible method to measure polarization features of the CMB radiation is by means of a Stokes Polarimeter based on the rotation of an Half Wave Plate. The current observational cosmology is starting to be limited by the presence of systema tic effects. The Stokes polarimeter with a rotating Half Wave Plate (HWP) has the advantage of mitigating a long list of potential systematics, by modulation of the linearly polarized component of the radiation, but the presence of the rotating HWP can by itself introduce new systematic effects, which must be under control, representing one of the most critical part in the design of a B-Modes experiment. In this paper we present, simulate and analyse the spurious signal arising from the precession of a rotating HWP. We first find an analytical formula for the impact of the systematic effect induced by the HWP precession on the propagating radiation, using the 3D generalization of the Muller formalism. We then perform several numerical simulations, showing the effect induced on the Stokes parameters by this systematic. We also derive and discuss the impact into B-modes measured by a satellite experiment. We find the analytical formula for the Stokes parameters from a Stokes polarimeter where the HWP follows a precessional motion with an angle $theta_0$. We show the result depending on the HWP inertia tensor, spinning speed and on $theta_0$. The result of numerical simulations is reported as a simple timeline of the electric fields. Finally, assuming to observe all the sky with a satellite mission, we analyze the effect on B-modes measurements. The effect is not negligible giving the current B-modes experiments sensitivity, therefore it is a systematic which needs to be carefully considered for future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا