ترغب بنشر مسار تعليمي؟ اضغط هنا

Studies of Systematic Uncertainties for Simons Observatory: Polarization Modulator Related Effects

98   0   0.0 ( 0 )
 نشر من قبل Maria Salatino Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Simons Observatory (SO) will observe the temperature and polarization anisotropies of the cosmic microwave background (CMB) over a wide range of frequencies (27 to 270 GHz) and angular scales by using both small (0.5 m) and large (6 m) aperture telescopes. The SO small aperture telescopes will target degree angular scales where the primordial B-mode polarization signal is expected to peak. The incoming polarization signal of the small aperture telescopes will be modulated by a cryogenic, continuously-rotating half-wave plate (CRHWP) to mitigate systematic effects arising from slowly varying noise and detector pair-differencing. In this paper, we present an assessment of some systematic effects arising from using a CRHWP in the SO small aperture systems. We focus on systematic effects associated with structural properties of the HWP and effects arising when operating a HWP, including the amplitude of the HWP synchronous signal (HWPSS), and I -> P (intensity to polarization) leakage that arises from detector non-linearity in the presence of a large HWPSS. We demonstrate our ability to simulate the impact of the aforementioned systematic effects in the time domain. This important step will inform mitigation strategies and design decisions to ensure that SO will meet its science goals.

قيم البحث

اقرأ أيضاً

In this proceeding, we present studies of instrumental systematic effects for the Simons Obsevatory (SO) that are associated with the detector system and its interaction with the full SO experimental systems. SO will measure the Cosmic Microwave Back ground (CMB) temperature and polarization anisotropies over a wide range of angular scales in six bands with bandcenters spanning from 27 GHz to 270 GHz. We explore effects including intensity-to-polarization leakage due to coupling optics, bolometer nonlinearity, uncalibrated gain variations of bolometers, and readout crosstalk. We model the level of signal contamination, discuss proposed mitigation schemes, and present instrument requirements to inform the design of SO and future CMB projects.
The Simons Observatory (SO) is a new experiment that aims to measure the cosmic microwave background (CMB) in temperature and polarization. SO will measure the polarized sky over a large range of microwave frequencies and angular scales using a combi nation of small ($sim0.5 , rm m$) and large ($sim 6, rm m $) aperture telescopes and will be located in the Atacama Desert in Chile. This work is part of a series of papers studying calibration, sensitivity, and systematic errors for SO. In this paper, we discuss current efforts to model optical systematic effects, how these have been used to guide the design of the SO instrument, and how these studies can be used to inform instrument design of future experiments like CMB-S4. While optical systematics studies are underway for both the small aperture and large aperture telescopes, we limit the focus of this paper to the more mature large aperture telescope design for which our studies include: pointing errors, optical distortions, beam ellipticity, cross-polar response, instrumental polarization rotation and various forms of sidelobe pickup.
The Simons Observatory (SO) is a set of cosmic microwave background instruments that will be deployed in the Atacama Desert in Chile. The key science goals include setting new constraints on cosmic inflation, measuring large scale structure with grav itational lensing, and constraining neutrino masses. Meeting these science goals with SO requires high sensitivity and improved calibration techniques. In this paper, we highlight a few of the most important instrument calibrations, including spectral response, gain stability, and polarization angle calibrations. We present their requirements for SO and experimental techniques that can be employed to reach those requirements.
The Simons Observatory (SO) Large Aperture Telescope Receiver (LATR) will be coupled to the Large Aperture Telescope located at an elevation of 5,200 m on Cerro Toco in Chile. The resulting instrument will produce arcminute-resolution millimeter-wave maps of half the sky with unprecedented precision. The LATR is the largest cryogenic millimeter-wave camera built to date with a diameter of 2.4 m and a length of 2.6 m. It cools 1200 kg of material to 4 K and 200 kg to 100 mk, the operating temperature of the bolometric detectors with bands centered around 27, 39, 93, 145, 225, and 280 GHz. Ultimately, the LATR will accommodate 13 40 cm diameter optics tubes, each with three detector wafers and a total of 62,000 detectors. The LATR design must simultaneously maintain the optical alignment of the system, control stray light, provide cryogenic isolation, limit thermal gradients, and minimize the time to cool the system from room temperature to 100 mK. The interplay between these competing factors poses unique challenges. We discuss the trade studies involved with the design, the final optimization, the construction, and ultimate performance of the system.
The Simons Observatory (SO) will provide precision polarimetry of the cosmic microwave background (CMB) using a series of telescopes which will cover angular scales from arc-minutes to tens of degrees, contain over 60,000 detectors, and observe in fr equency bands between 27 GHz and 270 GHz. SO will consist of a six-meter-aperture telescope initially coupled to ~35,000 detectors along with an array of 0.5m aperture refractive cameras, coupled to an additional 30,000+ detectors. The large aperture telescope receiver (LATR) is coupled to a six-meter crossed Dragone telescope and will be 2.4m in diameter, weigh over 3 tons, and have five cryogenic stages (80 K, 40 K, 4 K, 1 K and 100 mK). The LATR is coupled to the telescope via 13 independent optics tubes containing cryogenic optical elements and detectors. The cryostat will be cooled by by two Cryomech PT90 (80 K) and three Cryomech PT420 (40 K and 4 K) pulse tube cryocoolers, with cooling of the 1 K and 100 mK stages by a commercial dilution refrigerator system. The second component, the small aperture telescope (SAT), is a single optics tube refractive cameras of 42cm diameter. Cooling of the SAT stages will be provided by two Cryomech PT420, one of which is dedicated to the dilution refrigeration system which will cool the focal plane to 100 mK. SO will deploy a total of three SATs. In order to estimate the cool down time of the camera systems given their size and complexity, a finite difference code based on an implicit solver has been written to simulate the transient thermal behavior of both cryostats. The result from the simulations presented here predict a 35 day cool down for the LATR. The simulations suggest additional heat switches between stages would be effective in distribution cool down power and reducing the time it takes for the LATR to cool. The SAT is predicted to cool down in one week, which meets the SO design goals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا