ﻻ يوجد ملخص باللغة العربية
To study the magnetic dynamics of superparamagnetic nanoparticles we use scanning probe relaxometry and dephasing of the nitrogen-vacancy (NV) center in diamond, characterizing the spin-noise of a single 10-nm magnetite particle. Additionally, we show the anisotropy of the NV sensitivitys dependence on the applied decoherence measurement method. By comparing the change in relaxation (T 1 ) and dephasing (T 2 ) time in the NV center when scanning a nanoparticle over it, we are able to extract the nanoparticles diameter and distance from the NV center using an Ornstein-Uhlenbeck model for the nanoparticles fluctuations. This scanning-probe technique can be used in the future to characterize different spin label substitutes for both medical applications and basic magnetic nanoparticle behavior.
Antiferromagnetic materials are promising platforms for next-generation spintronics owing to their fast dynamics and high robustness against parasitic magnetic fields. However, nanoscale imaging of the magnetic order in such materials with zero net m
We report detailed measurements of the relaxation and dephasing time in a flux-qubit measured by a switching DC SQUID. We studied their dependence on the two important circuit bias parameters: the externally applied magnetic flux and the bias current
Unwanted interaction between a quantum system and its fluctuating environment leads to decoherence and is the primary obstacle to establishing a scalable quantum information processing architecture. Strategies such as environmental and materials engi
We have studied the dephasing of a superconducting flux-qubit coupled to a DC-SQUID based oscillator. By varying the bias conditions of both circuits we were able to tune their effective coupling strength. This allowed us to measure the effect of suc
A quantum two-level system with periodically modulated energy splitting could provide a minimal universal quantum heat machine. We present the experimental realization and the theoretical description of such a two-level system as an impurity electron