ﻻ يوجد ملخص باللغة العربية
With the advent of high-throughput wet lab technologies the amount of protein interaction data available publicly has increased substantially, in turn spurring a plethora of computational methods for in silico knowledge discovery from this data. In this paper, we focus on parameterized methods for modeling and solving complex computational problems encountered in such knowledge discovery from protein data. Specifically, we concentrate on three relevant problems today in proteomics, namely detection of lethal proteins, functional modules and alignments from protein interaction networks. We propose novel graph theoretic models for these problems and devise practical parameterized algorithms. At a broader level, we demonstrate how these methods can be viable alternatives for the several heurestic, randomized, approximation and sub-optimal methods by arriving at parameterized yet optimal solutions for these problems. We substantiate these theoretical results by experimenting on real protein interaction data of S. cerevisiae (budding yeast) and verifying the results using gene ontology.
ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction paramet
The stochastic simulation of large-scale biochemical reaction networks is of great importance for systems biology since it enables the study of inherently stochastic biological mechanisms at the whole cell scale. Stochastic Simulation Algorithms (SSA
Molecular networks act as the backbone of cellular activities, providing an {excellent} opportunity to understand the developmental changes in an organism. While network data usually constitute only stationary network graphs, constructing multilayer
An $h$-queue layout of a graph $G$ consists of a linear order of its vertices and a partition of its edges into $h$ queues, such that no two independent edges of the same queue nest. The minimum $h$ such that $G$ admits an $h$-queue layout is the que
Essential protein plays a crucial role in the process of cell life. The identification of essential proteins can not only promote the development of drug target technology, but also contribute to the mechanism of biological evolution. There are plent