ترغب بنشر مسار تعليمي؟ اضغط هنا

LAMOST Time-Domain Survey: First Results of four $K$2 plates

109   0   0.0 ( 0 )
 نشر من قبل Song Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From Oct. 2019 to Apr. 2020, LAMOST performs a time-domain spectroscopic survey of four $K$2 plates with both low- and med-resolution observations. The low-resolution spectroscopic survey gains 282 exposures ($approx$46.6 hours) over 25 nights, yielding a total of about 767,000 spectra, and the med-resolution survey takes 177 exposures ($approx$49.1 hours) over 27 nights, collecting about 478,000 spectra. More than 70%/50% of low-resolution/med-resolution spectra have signal-to-noise ratio higher than 10. We determine stellar parameters (e.g., $T_{rm eff}$, log$g$, [Fe/H]) and radial velocity (RV) with different methods, including LASP, DD-Payne, and SLAM. In general, these parameter estimations from different methods show good agreement, and the stellar parameter values are consistent with those of APOGEE. We use the $Gaia$ DR2 RV data to calculate a median RV zero point (RVZP) for each spectrograph exposure by exposure, and the RVZP-corrected RVs agree well with the APOGEE data. The stellar evolutionary and spectroscopic masses are estimated based on the stellar parameters, multi-band magnitudes, distances and extinction values. Finally, we construct a binary catalog including about 2700 candidates by analyzing their light curves, fitting the RV data, calculating the binarity parameters from med-resolution spectra, and cross-matching the spatially resolved binary catalog from $Gaia$ EDR3. The LAMOST TD survey is expected to get breakthrough in various scientific topics, such as binary system, stellar activity, and stellar pulsation, etc.


قيم البحث

اقرأ أيضاً

Since September 2018, LAMOST starts a new 5-year medium-resolution spectroscopic survey (MRS) using bright/gray nights. We present the scientific goals of LAMOST-MRS and propose a near optimistic strategy of the survey. A complete footprint is also p rovided. Not only the regular medium-resolution survey, but also a time-domain spectroscopic survey is being conducted since 2018 and will be end in 2023. According to the detailed survey plan, we expect that LAMOST-MRS can observe about 2 million stellar spectra with ~7500 and limiting magnitude of around G=15 mag. Moreover, it will also provide about 200 thousand stars with averagely 60-epoch observations and limiting magnitude of G~14 mag. These high quality spectra will give around 20 elemental abundances, rotational velocities, emission line profiles as well as precise radial velocity with uncertainty less than 1 km/s. With these data, we expect that LAMOST can effectively leverage sciences on stellar physics, e.g. exotic binary stars, detailed observation of many types of variable stars etc., planet host stars, emission nebulae, open clusters, young pre-main-sequence stars etc.
The LAMOST Medium-Resolution Spectroscopic Survey (LAMOST-MRS) provides an unprecedented opportunity for detecting multi-line spectroscopic systems. Based on the method of Cross-Correlation Function (CCF) and successive derivatives, we search for spe ctroscopic binaries and triples and derive their radial velocities (RVs) from the LAMOST-MRS spectra. A Monte-Carlo simulation is adopted to estimate the RV uncertainties. After examining over 1.3 million LAMOST DR7 MRS blue arm spectra, we obtain 3,133 spectroscopic binary (SB) and 132 spectroscopic triple (ST) candidates, which account for 1.2% of the LAMOST-MRS stars. Over 95% of the candidates are newly discovered. It is found that all of the ST candidates are on the main sequence, while around 10% of the SB candidates may have one or two components on the red giant branch.
522 - Bo Zhang , Jiao Li , Fan Yang 2021
Radial velocity (RV) is among the most fundamental physical quantities obtainable from stellar spectra and is rather important in the analysis of time-domain phenomena. The LAMOST Medium-Resolution Survey (MRS) DR7 contains 5 million single-exposure stellar spectra at spectral resolution $Rsim7,500$. However, the temporal variation of the RV zero-points (RVZPs) of the MRS survey, which makes the RVs from multiple epochs inconsistent, has not been addressed. In this paper, we measure the RVs of the 3.8 million single-exposure spectra (for 0.6 million stars) with signal-to-noise ratio (SNR) higher than 5 based on cross-correlation function (CCF) method, and propose a robust method to self-consistently determine the RVZPs exposure-by-exposure for each spectrograph with the help of textit{Gaia} DR2 RVs. Such RVZPs are estimated for 3.6 million RVs and can reach a mean precision of $sim 0.38,mathrm{km,s}^{-1}$. The result of the temporal variation of RVZPs indicates that our algorithm is efficient and necessary before we use the absolute RVs to perform time-domain analysis. Validating the results with APOGEE DR16 shows that our absolute RVs can reach an overall precision of 0.84/0.80 $mathrm{km,s}^{-1}$ in the blue/red arm at $50<mathrm{SNR}<100$, while 1.26/1.99 $mathrm{km,s}^{-1}$ at $5<mathrm{SNR}<10$. The cumulative distribution function (CDF) of the standard deviations of multiple RVs ($N_mathrm{obs}geq 8$) for 678 standard stars reach 0.45/0.54, 1.07/1.39, and 1.45/1.86 $mathrm{km,s}^{-1}$ in the blue/red arm at 50%, 90%, and 95% levels, respectively. The catalogs of the RVs, RVZPs, and selected candidate RV standard stars are available at url{https://github.com/hypergravity/paperdata}.
Accurate radial velocity determinations of optical emission lines (i.e. [NII]${lambda}{lambda}$6548,6584, H${alpha}$, and [SII]${lambda}{lambda}$6717,6731) are very important for investigating the kinematics and dynamics properties of nebulae. The se cond stage survey program of Large sky Area Multi-Object fiber Spectroscopic Telescope (LAMOST) has started a sub-survey of nebulae (MRS-N) which will spectroscopically observe the optical emission lines of a large sample of nebulae near the Galactic plane. Until now, 15 MRS-N plates have been observed from 2017 September to 2019 June. Based on fitting the sky emission lines in the red band spectra of MRS-N, we investigate the precision of wavelength calibration and find there are systematic deviations of radial velocities (RVs) from $sim$0.2 to 4 km/s for different plates. Especially for the plates obtained in 2018 March, the systematic deviations of RVs can be as large as $sim$4 km/s, which then go down to $sim$0.2-0.5 km/s at the end of 2018 and January 2019. A RVs calibration function is proposed for these MRS-N plates, which can simultaneously and successfully calibration the systematic deviations and improve the precision of RVs.
VENGA is a large-scale extragalactic IFU survey, which maps the bulges, bars and large parts of the outer disks of 32 nearby normal spiral galaxies. The targets are chosen to span a wide range in Hubble types, star formation activities, morphologies, and inclinations, at the same time of having vast available multi-wavelength coverage from the far-UV to the mid-IR, and available CO and 21cm mapping. The VENGA dataset will provide 2D maps of the SFR, stellar and gas kinematics, chemical abundances, ISM density and ionization states, dust extinction and stellar populations for these 32 galaxies. The uniqueness of the VIRUS-P large field of view permits these large-scale mappings to be performed. VENGA will allow us to correlate all these important quantities throughout the different environments present in galactic disks, allowing the conduction of a large number of studies in star formation, structure assembly, galactic feedback and ISM in galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا