ﻻ يوجد ملخص باللغة العربية
From Oct. 2019 to Apr. 2020, LAMOST performs a time-domain spectroscopic survey of four $K$2 plates with both low- and med-resolution observations. The low-resolution spectroscopic survey gains 282 exposures ($approx$46.6 hours) over 25 nights, yielding a total of about 767,000 spectra, and the med-resolution survey takes 177 exposures ($approx$49.1 hours) over 27 nights, collecting about 478,000 spectra. More than 70%/50% of low-resolution/med-resolution spectra have signal-to-noise ratio higher than 10. We determine stellar parameters (e.g., $T_{rm eff}$, log$g$, [Fe/H]) and radial velocity (RV) with different methods, including LASP, DD-Payne, and SLAM. In general, these parameter estimations from different methods show good agreement, and the stellar parameter values are consistent with those of APOGEE. We use the $Gaia$ DR2 RV data to calculate a median RV zero point (RVZP) for each spectrograph exposure by exposure, and the RVZP-corrected RVs agree well with the APOGEE data. The stellar evolutionary and spectroscopic masses are estimated based on the stellar parameters, multi-band magnitudes, distances and extinction values. Finally, we construct a binary catalog including about 2700 candidates by analyzing their light curves, fitting the RV data, calculating the binarity parameters from med-resolution spectra, and cross-matching the spatially resolved binary catalog from $Gaia$ EDR3. The LAMOST TD survey is expected to get breakthrough in various scientific topics, such as binary system, stellar activity, and stellar pulsation, etc.
Since September 2018, LAMOST starts a new 5-year medium-resolution spectroscopic survey (MRS) using bright/gray nights. We present the scientific goals of LAMOST-MRS and propose a near optimistic strategy of the survey. A complete footprint is also p
The LAMOST Medium-Resolution Spectroscopic Survey (LAMOST-MRS) provides an unprecedented opportunity for detecting multi-line spectroscopic systems. Based on the method of Cross-Correlation Function (CCF) and successive derivatives, we search for spe
Radial velocity (RV) is among the most fundamental physical quantities obtainable from stellar spectra and is rather important in the analysis of time-domain phenomena. The LAMOST Medium-Resolution Survey (MRS) DR7 contains 5 million single-exposure
Accurate radial velocity determinations of optical emission lines (i.e. [NII]${lambda}{lambda}$6548,6584, H${alpha}$, and [SII]${lambda}{lambda}$6717,6731) are very important for investigating the kinematics and dynamics properties of nebulae. The se
VENGA is a large-scale extragalactic IFU survey, which maps the bulges, bars and large parts of the outer disks of 32 nearby normal spiral galaxies. The targets are chosen to span a wide range in Hubble types, star formation activities, morphologies,