ﻻ يوجد ملخص باللغة العربية
We present a model of two-kinks resulting from an explicit composition of two standards kinks of the $phi^4$ model based on the procedure of Ref. cite{uchiyama}. The two-kinks have an additional parameter accounting for the separation of the standard kinks of $phi^4$ model. We have shown that the two-kinks have two discrete internal modes besides the zeroth mode and the continuous spectrum. This new feature signalizes that the head-on collision a two-kinks/two-antikinks pair exhibits a rich and complex behavior due to the additional channel from which the energy of the system can be stored. We have exhibited the fractal structure associated with the main configurations after the collision. We have inferred the fractality as the imprint of the nonlinear exchange of energy into the two discrete internal modes.
It is proved that when 8 fermions associated with the supersymmetries broken by the AdS_4 x CP^3 superbackground are gauged away by using the kappa-symmetry corresponding equations obtained by variation of the AdS_4 x CP^3 superstring action are cont
We have investigated the head-on collision of a two-kink and a two-antikink pair that arises as a generalization of the $phi^4$ model. We have evolved numerically the Klein-Gordon equation with a new spectral algorithm whose accuracy and convergence
We investigate the problem of finding a pure spin-connection formulation of General Relativity with non-vanishing cosmological constant. We first revisit the problem at the linearised level and find that the pure spin-connection, quadratic Lagrangian
We describe a new class of N=2 topological amplitudes that compute a particular class of BPS terms in the low energy effective supergravity action. Specifically they compute the coupling F^2(lambdalambda)^{g-2}(dphi)^2 where F, lambda and phi are gau
The known prepotential solutions F to the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation are parametrized by a set {alpha} of covectors. This set may be taken to be indecomposable, since F_{alpha oplus beta}=F_{alpha}+F_{beta}. We couple mutually