ﻻ يوجد ملخص باللغة العربية
We study conditions for which the mapping torus of a 6-manifold endowed with an $SU(3)$-structure is a locally conformal calibrated $G_2$-manifold, that is, a 7-manifold endowed with a $G_2$-structure $varphi$ such that $d varphi = - theta wedge varphi$ for a closed non-vanishing 1-form $theta$. Moreover, we show that if $(M, varphi)$ is a compact locally conformal calibrated $G_2$-manifold with $mathcal{L}_{theta^{#}} varphi =0$, where ${theta^{#}}$ is the dual of $theta$ with respect to the Riemannian metric $g_{varphi}$ induced by $varphi$, then $M$ is a fiber bundle over $S^1$ with a coupled $SU(3)$-manifold as fiber.
We study in this paper the fractional Yamabe problem first considered by Gonzalez-Qing on the conformal infinity $(M^n , [h])$ of a Poincare-Einstein manifold $(X^{n+1} , g^+ )$ with either $n = 2$ or $n geq 3$ and $(M^n , [h])$ is locally flat - nam
Given $(bar{M},Omega)$ a calibrated Riemannian manifold with a parallel calibration of rank $m$, and $M^m$ an immersed orientable submanifold with parallel mean curvature $H$ we prove that if $cos theta$ is bounded away from zero, where $theta$ is th
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a $pp$-wave or a warped product.
It is a prominent conjecture (relating Riemannian geometry and algebraic topology) that all simply-connected compact manifolds of special holonomy should be formal spaces, i.e., their rational homotopy type should be derivable from their rational coh
The goal of this article is to investigate nontrivial $m$-quasi-Einstein manifolds globally conformal to an $n$-dimensional Euclidean space. By considering such manifolds, whose conformal factors and potential functions are invariant under the action