ﻻ يوجد ملخص باللغة العربية
We study in this paper the fractional Yamabe problem first considered by Gonzalez-Qing on the conformal infinity $(M^n , [h])$ of a Poincare-Einstein manifold $(X^{n+1} , g^+ )$ with either $n = 2$ or $n geq 3$ and $(M^n , [h])$ is locally flat - namely $(M, h)$ is locally conformally flat. However, as for the classical Yamabe problem, because of the involved quantization phenomena, the variational analysis of the fractional one exhibits also a local situation and a global one. Furthermore the latter global situation includes the case of conformal infinities of Poincare-Einstein manifolds of dimension either 2 or of dimension greater than $2$ and which are locally flat, and hence the minimizing technique of Aubin- Schoen in that case clearly requires an analogue of the positive mass theorem of Schoen-Yau which is not known to hold. Using the algebraic topological argument of Bahri-Coron, we bypass the latter positive mass issue and show that any conformal infinity of a Poincare-Einstein manifold of dimension either $n = 2$ or of dimension $n geq 3$ and which is locally flat admits a Riemannian metric of constant fractional scalar curvature.
We show that locally conformally flat quasi-Einstein manifolds are globally conformally equivalent to a space form or locally isometric to a $pp$-wave or a warped product.
For a Poincare-Einstein manifold under certain restrictions, X. Chen, M. Lai and F. Wang proved a sharp inequality relating Yamabe invariants. We show that the inequality is true without any restriction.
We study conditions for which the mapping torus of a 6-manifold endowed with an $SU(3)$-structure is a locally conformal calibrated $G_2$-manifold, that is, a 7-manifold endowed with a $G_2$-structure $varphi$ such that $d varphi = - theta wedge varp
We consider, in the Euclidean setting, a conformal Yamabe-type equation related to a potential generalization of the classical constant scalar curvature problem and which naturally arises in the study of Ricci solitons structures. We prove existence
The goal of this article is to study the geometry of Bach-flat noncompact steady quasi-Einstein manifolds. We show that a Bach-flat noncompact steady quasi-Einstein manifold $(M^{n},,g)$ with positive Ricci curvature such that its potential function