ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronae and Winds from Irradiated Disks in X-ray binaries

568   0   0.0 ( 0 )
 نشر من قبل Nick Higginbottom
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray and UV line emission in X-ray binaries can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several X-ray binaries via blue-shifted absorption lines. However, the causal connection between winds produced by irradiation and the blue-shifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these `thermal disk-winds cannot explain blue-shifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk-winds and wealth of data taken with current observatories such as Chandra, XMM-Newton and Suzaku, as well as the future AstroH mission, we decided to investigate the requirements to produce very dense winds. Using physical arguments, hydrodynamical simulations and absorption line calculations, we found that modification of the heating and cooling rates by a factor of a few results in an increase of the wind density of up to an order of magnitude and the wind velocity by a factor of about two. Therefore, the mass loss rate from the disk can be one, if not even two orders of magnitude higher than the accretion rate onto the central object. Such a high mass loss rate is expected to destabilize the disk and perhaps provides a mechanism for state change.



قيم البحث

اقرأ أيضاً

Plasma accreted onto the surface of a neutron star can ignite due to unstable thermonuclear burning and produce a bright flash of X-ray emission called a Type-I X-ray burst. Such events are very common; thousands have been observed to date from over a hundred accreting neutron stars. The intense, often Eddington-limited, radiation generated in these thermonuclear explosions can have a discernible effect on the surrounding accretion flow that consists of an accretion disk and a hot electron corona. Type-I X-ray bursts can therefore serve as direct, repeating probes of the internal dynamics of the accretion process. In this work we review and interpret the observational evidence for the impact that Type-I X-ray bursts have on accretion disks and coronae. We also provide an outlook of how to make further progress in this research field with prospective experiments and analysis techniques, and by exploiting the technical capabilities of the new and concept X-ray missions ASTROSAT, NICER, HXMT, eXTP, and STROBE-X.
176 - M. Diaz Trigo , L. Boirin 2012
We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combinati on of thermal and radiative pressure (the latter being relevant at high luminosities) can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.
High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines from disk winds which seem to be equatorial. Winds occur in the Softer (disk-dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. We use self-similar magneto-hydrodynamic (MHD) accretion-ejection models to explain the disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter, but is determined by solving the full set of dynamical MHD equations. Thus the physical properties of the outflow are controlled by the global structure of the disk. We studied different MHD solutions characterized by different values of (a) the disk aspect ratio ($varepsilon$) and (b) the ejection efficiency ($p$). We use two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be from e.g. dissipation of energy due to MHD turbulence in the disk or from illumination. We use each of these MHD solutions to predict the physical parameters of an outflow; put limits on the ionization parameter ($xi$), column density and timescales, motivated by observational results; and thus select regions within the outflow which are consistent with the observed winds. The cold MHD solutions cannot account for winds due to their low ejection efficiency. But warm solutions can explain the observed physical quantities in the wind because they can have sufficiently high values of $p$ ($gtrsim 0.1$, implying larger mass loading at the base of the outflow). Further from our thermodynamic equilibrium curve analysis for the outflowing gas, we found that in the Hard state a range of $xi$ is thermodynamically unstable, and had to be excluded. This constrain made it impossible to have any wind at all, in the Hard state.
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying prope rties of the emitted X-rays; but on the other side the accretors gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.
From hot, tenuous gas dominated by Compton processes, to warm, photoionized emission-line regions, to cold, optically thick fluorescing matter, accreting gas flows in X-ray binaries span a huge portion of the parameter space accessible to astrophysic al plasmas. The coexistence of such diverse states of material within small volumes (10^33-10^36 cm^3) leaves X-ray spectroscopists with a challenging set of problems, since all such matter produces various X-ray spectral signatures when exposed to hard X rays. Emission-line regions in X-ray binaries are characterized by high radiation energy densities, relatively high particle densities, and velocities ~1000 km/s. In this article, we describe some recent efforts to generate detailed X-ray line spectra from models of X-ray binaries, whose aims are to reproduce spectra acquired with the ASCA, Chandra, and XMM-Newton observatories. With emphasis on the global nature of X-ray line emission in these systems, the article includes separate treatments of high-mass and low-mass systems, as well as summaries of continuum spectroscopy
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا