ترغب بنشر مسار تعليمي؟ اضغط هنا

Disc atmospheres and winds in X-ray binaries

161   0   0.0 ( 0 )
 نشر من قبل Maria Diaz Trigo
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities) can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.



قيم البحث

اقرأ أيضاً

82 - M. Diaz Trigo , L. Boirin 2015
In the last decade, X-ray spectroscopy has enabled a wealth of discoveries of photoionised absorbers in X-ray binaries. Studies of such accretion disc atmospheres and winds are of fundamental importance to understand accretion processes and possible feedback mechanisms to the environment. In this work, we review the current observational state and theoretical understanding of accretion disc atmospheres and winds in low-mass X-ray binaries, focusing on the wind launching mechanisms and on the dependence on accretion state. We conclude with issues that deserve particular attention.
We have carried out radiation-hydrodynamic simulations of thermally-driven accretion disc winds in low-mass X-ray binaries. Our main goal is to study the luminosity dependence of these outflows and compare with observations. The simulations span the range $rm{0.04 leq L_{acc}/L_{Edd} leq 1.0}$ and therefore cover most of the parameter space in which disc winds have been observed. Using a detailed Monte Carlo treatment of ionization and radiative transfer, we confirm two key results found in earlier simulations that were carried out in the optically thin limit: (i) the wind velocity -- and hence the maximum blueshift seen in wind-formed absorption lines -- increases with luminosity; (ii) the large-scale wind geometry is quasi-spherical, but observable absorption features are preferentially produced along high-column equatorial sightlines. In addition, we find that (iii) the wind efficiency always remains approximately constant at $rm{dot{M}_{wind}/dot{M}_{acc} simeq 2}$, a behaviour that is consistent with observations. We also present synthetic Fe XXV and Fe XXVI absorption line profiles for our simulated disc winds in order to illustrate the observational implications of our results.
Recurring outbursts associated with matter flowing onto compact stellar remnants (black-holes, neutron stars, white dwarfs) in close binary systems, provide strong test beds for constraining the poorly understood accretion process. The efficiency of angular momentum (and thus mass) transport in accretion discs, which has traditionally been encoded in the $alpha$-viscosity parameter, shapes the light-curves of these outbursts. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport find values of $alpha sim 0.1-0.2$ as required from observations of accreting white dwarfs. Equivalent $alpha$-viscosity parameters have never been estimated in discs around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light-curves of twenty-one black hole X-ray binary outbursts. Applying a Bayesian approach for a model of accretion allows us to determine corresponding $alpha$-viscosity parameters, directly from the light curves, to be $alpha sim$0.2--1. This result may be interpreted either as a strong intrinsic rate of angular momentum transport in the disc, which can only be sustained by the magneto-rotational instability if a large-scale magnetic field threads the disc, or as a direct indication that mass is being lost from the disc through substantial mass outflows strongly shaping the X-ray binary outburst. Furthermore, the lack of correlation between our estimates of $alpha$-viscosity and accretion state implies that such outflows can remove a significant fraction of disc mass in all black hole X-ray binary accretion states, favouring magnetically-driven winds over thermally-driven winds that require specific radiative conditions.
Strong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying prope rties of the emitted X-rays; but on the other side the accretors gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.
X-ray signatures of outflowing gas have been detected in several accreting black-hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the fi rst full-frequency radiation hydrodynamic simulations of luminous ($rm{L = 0.5 , L_{mathrm{Edd}}}$) black-hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with $rm{dot{M}_{wind} simeq 2 ,dot{M}_{acc}}$ are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations $gtrsim 80^{circ}$, blue-shifted wind-formed Fe XXV and Fe XXVI features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a {em luminous} hard state -- the peculiar GRS~1915+105 -- we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا