ترغب بنشر مسار تعليمي؟ اضغط هنا

Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment

119   0   0.0 ( 0 )
 نشر من قبل Rusen Yan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals (vdW) heterojunctions composed of 2-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibit novel physics phenomena that can power high performance electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature (RT) Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions, and widen the potential applications base of 2D layered materials.


قيم البحث

اقرأ أيضاً

With the advanced investigations into low-dimensional systems, it has become essential to find materials having interesting lattices that can be exfoliated down to monolayer. One particular important structure is a kagome lattice with its potentially diverse and vibrant physics. We report a van-der-Waals kagome lattice material, Pd3P2S8, with several unique properties such as an intriguing flat band. The flat band is shown to arise from a possible compact-localized state of all five 4d orbitals of Pd. The diamagnetic susceptibility is precisely measured to support the calculated susceptibility obtained from the band structure. We further demonstrate that Pd3P2S8 can be exfoliated down to monolayer, which ultimately will allow the possible control of the localized states in this two-dimensional kagome lattice using the electric field gating.
We have synthesized unique colloidal nanoplatelets of the ferromagnetic two-dimensional (2D) van der Waals material CrI3 and have characterized these nanoplatelets structurally, magnetically, and by magnetic circular dichroism spectroscopy. The isola ted CrI3 nanoplatelets have lateral dimensions of ~25 nm and ensemble thicknesses of only ~4 nm, corresponding to just a few CrI3 monolayers. Magnetic and magneto-optical measurements demonstrate robust 2D ferromagnetic ordering in these nanoplatelets with Curie temperatures similar to those observed in bulk CrI3, despite the strong spatial confinement. These data also show magnetization steps akin to those observed in micron-sized few-layer 2D sheets and associated with concerted spin-reversal of individual CrI3 layers within few-layer van der Waals stacks. Similar data have also been obtained for CrBr3 and anion-alloyed Cr(I1-xBrx)3 nanoplatelets. These results represent the first example of laterally confined 2D van der Waals ferromagnets of any composition. The demonstration of robust ferromagnetism at nanometer lateral dimensions opens new doors for miniaturization in spintronics devices based on van der Waals ferromagnets.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
We report first-principles calculations of the structural and vibrational properties of the synthesized two-dimensional van der Waals heterostructures formed by single-layers dichalcogenides MoSe2 and WSe2. We show that, when combining these systems in a periodic two-dimensional heterostructures, the intrinsic phonon characteristics of the free-standing constituents are to a large extent preserved but, furthermore, exhibit shear and breathing phonon modes that are not present in the individual building blocks. These peculiar modes depend strongly on the weak vdW forces and has a great contibution to the thermal properties of the layered materials. Besides these features, the departure of flexural modes of heterobilayer from the ones of its monolayer parents are also found.
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. We present optical dispersion engineering in a superlattice structure comprised of alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate > 90 % narrowband absorption in < 4 nm active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in cm2 samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tunable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically-thin layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا