ترغب بنشر مسار تعليمي؟ اضغط هنا

Low Rank Pure Quaternion Approximation for Pure Quaternion Matrices

140   0   0.0 ( 0 )
 نشر من قبل Guangjing Song
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quaternion matrices are employed successfully in many color image processing applications. In particular, a pure quaternion matrix can be used to represent red, green and blue channels of color images. A low-rank approximation for a pure quaternion matrix can be obtained by using the quaternion singular value decomposition. However, this approximation is not optimal in the sense that the resulting low-rank approximation matrix may not be pure quaternion, i.e., the low-rank matrix contains real component which is not useful for the representation of a color image. The main contribution of this paper is to find an optimal rank-$r$ pure quaternion matrix approximation for a pure quaternion matrix (a color image). Our idea is to use a projection on a low-rank quaternion matrix manifold and a projection on a quaternion matrix with zero real component, and develop an alternating projections algorithm to find such optimal low-rank pure quaternion matrix approximation. The convergence of the projection algorithm can be established by showing that the low-rank quaternion matrix manifold and the zero real component quaternion matrix manifold has a non-trivial intersection point. Numerical examples on synthetic pure quaternion matrices and color images are presented to illustrate the projection algorithm can find optimal low-rank pure quaternion approximation for pure quaternion matrices or color images.



قيم البحث

اقرأ أيضاً

Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image processing and recognition problems, only a small number of dominant SVD triplets are selected, while in some applications such as quaternion total least squares problem, small SVD triplets (small singular values and associated singular vectors) and numerical rank with respect to a small threshold are required. In this paper, we propose a randomized quaternion SVD (verbrandsvdQ) method to compute a small number of SVD triplets of a large-scale quaternion matrix. Theoretical results are given about approximation errors and the corresponding algorithm adapts to the low-rank matrix approximation problem. When the restricted rank increases, it might lead to information loss of small SVD triplets. The blocked quaternion randomized SVD algorithm is then developed when the numerical rank and information about small singular values are required. For color face recognition problems, numerical results show good performance of the developed quaternion randomized SVD method for low-rank approximation of a large-scale quaternion matrix. The blocked randomized SVD algorithm is also shown to be more robust than unblocked method through several experiments, and approximation errors from the blocked scheme are very close to the optimal error obtained by truncating a full SVD.
The unscented Kalman inversion (UKI) presented in [1] is a general derivative-free approach to solving the inverse problem. UKI is particularly suitable for inverse problems where the forward model is given as a black box and may not be differentiabl e. The regularization strategy and convergence property of the UKI are thoroughly studied, and the method is demonstrated effectively handling noisy observation data and solving chaotic inverse problems. In this paper, we aim to make the UKI more efficient in terms of computational and memory costs for large scale inverse problems. We take advantages of the low-rank covariance structure to reduce the number of forward problem evaluations and the memory cost, related to the need to propagate large covariance matrices. And we leverage reduced-order model techniques to further speed up these forward evaluations. The effectiveness of the enhanced UKI is demonstrated on a barotropic model inverse problem with O($10^5$) unknown parameters and a 3D generalized circulation model (GCM) inverse problem, where each iteration is as efficient as that of gradient-based optimization methods.
Some fast algorithms for computing the eigenvalues of a block companion matrix $A = U + XY^H$, where $Uin mathbb C^{ntimes n}$ is unitary block circulant and $X, Y inmathbb{C}^{n times k}$, have recently appeared in the literature. Most of these algo rithms rely on the decomposition of $A$ as product of scalar companion matrices which turns into a factored representation of the Hessenberg reduction of $A$. In this paper we generalize the approach to encompass Hessenberg matrices of the form $A=U + XY^H$ where $U$ is a general unitary matrix. A remarkable case is $U$ unitary diagonal which makes possible to deal with interpolation techniques for rootfinding problems and nonlinear eigenvalue problems. Our extension exploits the properties of a larger matrix $hat A$ obtained by a certain embedding of the Hessenberg reduction of $A$ suitable to maintain its structural properties. We show that $hat A$ can be factored as product of lower and upper unitary Hessenberg matrices possibly perturbed in the first $k$ rows, and, moreover, such a data-sparse representation is well suited for the design of fast eigensolvers based on the QR/QZ iteration. The resulting algorithm is fast and backward stable.
Positive semi-definite matrices commonly occur as normal matrices of least squares problems in statistics or as kernel matrices in machine learning and approximation theory. They are typically large and dense. Thus algorithms to solve systems with su ch a matrix can be very costly. A core idea to reduce computational complexity is to approximate the matrix by one with a low rank. The optimal and well understood choice is based on the eigenvalue decomposition of the matrix. Unfortunately, this is computationally very expensive. Cheaper methods are based on Gaussian elimination but they require pivoting. We will show how invariant matrix theory provides explicit error formulas for an averaged error based on volume sampling. The formula leads to ratios of elementary symmetric polynomials on the eigenvalues. We discuss some new an old bounds and include several examples where an expected error norm can be computed exactly.
127 - Jared Tanner , Simon Vary 2020
Expressing a matrix as the sum of a low-rank matrix plus a sparse matrix is a flexible model capturing global and local features in data. This model is the foundation of robust principle component analysis (Candes et al., 2011) (Chandrasekaran et al. , 2009), and popularized by dynamic-foreground/static-background separation (Bouwmans et al., 2016) amongst other applications. Compressed sensing, matrix completion, and their variants (Eldar and Kutyniok, 2012) (Foucart and Rauhut, 2013) have established that data satisfying low complexity models can be efficiently measured and recovered from a number of measurements proportional to the model complexity rather than the ambient dimension. This manuscript develops similar guarantees showing that $mtimes n$ matrices that can be expressed as the sum of a rank-$r$ matrix and a $s$-sparse matrix can be recovered by computationally tractable methods from $mathcal{O}(r(m+n-r)+s)log(mn/s)$ linear measurements. More specifically, we establish that the restricted isometry constants for the aforementioned matrices remain bounded independent of problem size provided $p/mn$, $s/p$, and $r(m+n-r)/p$ reman fixed. Additionally, we show that semidefinite programming and two hard threshold gradient descent algorithms, NIHT and NAHT, converge to the measured matrix provided the measurement operators RICs are sufficiently small. Numerical experiments illustrating these results are shown for synthetic problems, dynamic-foreground/static-background separation, and multispectral imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا