ﻻ يوجد ملخص باللغة العربية
A detailed model of the High Luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS15 codes. In the optimized configuration, the peak power density averaged over the magnet inner cable width is safely below the quench limit. For the integrated luminosity of 3000 fb-1, the peak dose in the innermost magnet insulator ranges from 20 to 35 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. In general, FLUKA and MARS results are in a very good agreement.
A detailed model of the High Luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS15 codes. In the optimized
HL-LHC federates the efforts and R&D of a large international community towards the ambitious HL- LHC objectives and contributes to establishing the European Research Area (ERA) as a focal point of global research cooperation and a leader in frontier
This paper presents one of the case studies of the Gamma Factory initiative -- a proposal of a new operation scheme of ion beams in the CERN accelerator complex. Its goal is to extend the scope and precision of the LHC-based research by complementing
Machine learning entails a broad range of techniques that have been widely used in Science and Engineering since decades. High-energy physics has also profited from the power of these tools for advanced analysis of colliders data. It is only up until
A high-energy muon collider scenario require a final cooling system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoi