ترغب بنشر مسار تعليمي؟ اضغط هنا

High-luminosity Large Hadron Collider with laser-cooled isoscalar ion beams

64   0   0.0 ( 0 )
 نشر من قبل Mieczyslaw Witold Krasny
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents one of the case studies of the Gamma Factory initiative -- a proposal of a new operation scheme of ion beams in the CERN accelerator complex. Its goal is to extend the scope and precision of the LHC-based research by complementing the proton-proton collision programme with the high-luminosity nucleus-nucleus one. Its numerous physics highlights include studies of the exclusive Higgs-boson production in photon-photon collisions and precision measurements of the electroweak (EW) parameters. There are two principal ways to increase the LHC luminosity which do not require an upgrade of the CERN injectors: (1) modification of the beam-collision optics and (2) reduction of the transverse emittance of the colliding beams. The former scheme is employed by the ongoing high-luminosity (HL-LHC) project. The latter one, applicable only to ion beams, is proposed in this paper. It is based on laser cooling of bunches of partially stripped ions at the SPS flat-top energy. For isoscalar calcium beams, which fulfil the present beam-operation constrains and which are particularly attractive for the EW physics, the transverse beam emittance can be reduced by a factor of $5$ within the $8$ seconds long cooling phase. The predicted nucleon-nucleon luminosity of $L_{NN}= 4.2 times 10^{34},$s$^{-1}$cm$^{-2}$ for collisions of the cooled calcium beams at the LHC top energy is comparable to the levelled luminosity for the HL-LHC proton-proton collisions, but with reduced pile-up background. The scheme proposed in this paper, if confirmed by the future Gamma Factory proof-of-principle experiment, could be implemented at CERN with minor infrastructure investments.


قيم البحث

اقرأ أيضاً

We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC st ores (from Run 7), colliding 100 GeV/nucleon Au beams without stochastic cooling. These are compared with two different calculation methods. The first is a simulation based on multi-particle tracking taking into account collisions, intrabeam scattering, radiation damping, and synchrotron and betatron motion. In the second, faster, method, a system of ordinary differential equations with terms describing the corresponding effects on emittances and bunch populations is solved numerically. Results of the tracking method agree very well with the RHIC data. With the faster method, significant discrepancies are found since the losses of particles diffusing out of the RF bucket due to intrabeam scattering are not modeled accurately enough. Finally, we use both methods to make predictions of the time evolution of the future Pb beams in the LHC at injection and collision energy. For this machine, the two methods agree well.
HL-LHC federates the efforts and R&D of a large international community towards the ambitious HL- LHC objectives and contributes to establishing the European Research Area (ERA) as a focal point of global research cooperation and a leader in frontier knowledge and technologies. HL-LHC relies on strong participation from various partners, in particular from leading US and Japanese laboratories. This participation will be required for the execution of the construction phase as a global project. In particular, the US LHC Accelerator R&D Program (LARP) has developed some of the key technologies for the HL-LHC, such as the large-aperture niobium-tin ($Nb_{3}Sn) quadrupoles and the crab cavities. The proposed governance model is tailored accordingly and should pave the way for the organization of the construction phase.
A good understanding of the luminosity performance in a collider, as well as reliable tools to analyse, predict, and optimise the performance, are of great importance for the successful planning and execution of future runs. In this article, we prese nt two different models for the evolution of the beam parameters and the luminosity in heavy-ion colliders. The first, Collider Time Evolution (CTE) is a particle tracking code, while the second, the Multi-Bunch Simulation (MBS), is based on the numerical solution of ordinary differential equations for beam parameters. As a benchmark, we compare simulations and data for a large number of physics fills in the 2018 Pb-Pb run at the CERN Large Hadron Collider (LHC), finding excellent agreement for most parameters, both between the simulations and with the measured data. Both codes are then used independently to predict the performance in future heavy-ion operation, with both Pb-Pb and p-Pb collisions, at the LHC and its upgrade, the High-Luminosity LHC. The use of two independent codes based on different principles gives increased confidence in the results.
A precise determination of absolute luminosity, using the bremsstrahlung process, at the future Electron-Ion Collider (EIC) will be very demanding, and its three major challenges are discussed herein. First, the bremsstrahlung rate suppression due to the so-called beam size effect has to be well controlled. Secondly, the impact of huge synchrotron radiation fluxes should be mitigated. Thirdly, enormous bremsstrahlung event rates, in excess of 10 GHz, have to be coped with. A basic layout of the luminosity measurement setup at the EIC, addressing these issues, is proposed, including preliminary detector technology choices. Finally, the uncertainties of three proposed methods are also discussed.
In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. A new ERL accelerator, which pro vide 5-30 GeV electron beam, will ensure 10^33 to 10^34 cm^-2 s^-1 level luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا