ﻻ يوجد ملخص باللغة العربية
We report the observation of transverse polarization-dependent azimuthal correlations in charged pion pair production with the STAR experiment in $p^uparrow+p$ collisions at RHIC. These correlations directly probe quark transversity distributions. We measure signals in excess of five standard deviations at high transverse momenta, at high pseudorapidities eta>0.5, and for pair masses around the mass of the rho-meson. This is the first direct transversity measurement in p+p collisions. Comparing the results to data from lepton-nucleon scattering will test the universality of these spin-dependent quantities.
The transversity distribution, which describes transversely polarized quarks in transversely polarized nucleons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by global fits to existing semi-inclusiv
We present a measurement of the cross section and transverse single-spin asymmetry ($A_N$) for $eta$ mesons at large pseudorapidity from $sqrt{s}=200$~GeV $p^{uparrow}+p$ collisions. The measured cross section for $0.5<p_T<5.0$~GeV/$c$ and $3.0<|eta|
Dihadron and isolated direct photon-hadron angular correlations are measured in $p$$+$$p$ collisions at $sqrt{s}=200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum $k_T$ and $j_T$ in the azim
Studying spin-momentum correlations in hadronic collisions offers a glimpse into a three-dimensional picture of proton structure. The transverse single-spin asymmetry for midrapidity isolated direct photons in $p^uparrow+p$ collisions at $sqrt{s}=200
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|eta|<0.35$) in longitudinally polarized $p$$+$$p$ collisions at $sqrt{s}=510$ GeV. These