ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of charged pion double spin asymmetries at midrapidity in longitudinally polarized $p$$+$$p$ collisions at $sqrt{s}=510$ GeV

124   0   0.0 ( 0 )
 نشر من قبل Brant M. Johnson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the longitudinal double spin asymmetries, $A_{LL}$, for charged pions at midrapidity ($|eta|<0.35$) in longitudinally polarized $p$$+$$p$ collisions at $sqrt{s}=510$ GeV. These measurements are sensitive to the gluon spin contribution to the total spin of the proton in the parton momentum fraction $x$ range between 0.04 and 0.09. One can infer the sign of the gluon polarization from the ordering of pion asymmetries with charge alone. The asymmetries are found to be consistent with global quantum-chromodynamics fits of deep-inelastic scattering and data at $sqrt{s}=200$ GeV, which show a nonzero positive contribution of gluon spin to the proton spin.

قيم البحث

اقرأ أيضاً

We report the double helicity asymmetry, $A_{LL}^{J/psi}$, in inclusive $J/psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $sqrt{s}=510$ GeV longitudinally polariz ed $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, $J/psi$ particles are predominantly produced through gluon-gluon scatterings, thus $A_{LL}^{J/psi}$ is sensitive to the gluon polarization inside the proton. We measured $A_{LL}^{J/psi}$ by detecting the decay daughter muon pairs $mu^+ mu^-$ within the PHENIX muon spectrometers in the rapidity range $1.2<|y|<2.2$. In this kinematic range, we measured the $A_{LL}^{J/psi}$ to be $0.012 pm 0.010$~(stat)~$pm$~$0.003$(syst). The $A_{LL}^{J/psi}$ can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken $x$: one at moderate range $x approx 0.05$ where recent RHIC data of jet and $pi^0$ double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-$x$ region $x approx 2times 10^{-3}$. Thus our new results could be used to further constrain the gluon polarization for $x< 0.05$.
Unpolarized cross sections and double-helicity asymmetries of single-inclusive positive and negative charged hadrons at midrapidity from p+p collisions at sqrt(s)=62.4 GeV are presented. The PHENIX measurements for 1.0 < p_T < 4.5 GeV/c are consisten t with perturbative QCD calculations at next-to-leading order in the strong coupling constant, alpha_s. Resummed pQCD calculations including terms with next-to-leading-log accuracy, yielding reduced theoretical uncertainties, also agree with the data. The double-helicity asymmetry, sensitive at leading order to the gluon polarization in a momentum-fraction range of 0.05 ~< x_gluon ~< 0.2, is consistent with recent global parameterizations disfavoring large gluon polarization.
99 - M.H. Kim , O. Adriani , E. Berti 2020
Transverse single-spin asymmetries of very forward neutral pions generated in polarized $p + p$ collisions allow us to understand the production mechanism in terms of perturbative and non-perturbative strong interactions. During 2017 the RHICf Collab oration installed an electromagnetic calorimeter in the zero-degree region of the STAR detector at the Relativistic Heavy Ion Collider (RHIC) and measured neutral pions produced at pseudorapidity larger than 6 in polarized $p$+$p$ collisions at $sqrt{s}$ = 510 GeV. The large non-zero asymmetries increasing both in longitudinal momentum fraction $x_{F}$ and transverse momentum $p_{T}$ have been observed at low transverse momentum $p_{T} < 1$ GeV/$c$ for the first time at this collision energy. The asymmetries show an approximate $x_{F}$ scaling in the $p_{T}$ region where non-perturbative processes are expected to dominate. A non-negligible contribution from soft processes may be necessary to explain the nonzero neutral pion asymmetries.
PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $pi^0$ production at midrapidity from $p$$+$$p$ collisions at $sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy I on Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $xsim0.01$, and thus provide additional constraints on the value of $Delta G$. The results confirm the evidence for nonzero $Delta G$ using a different production channel in a complementary kinematic region.
The differential cross section for the production of direct photons in p+p collisions at sqrt(s)=200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive-direct photons were measured in the transver se-momentum range from 5.5--25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x_T, the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا