ترغب بنشر مسار تعليمي؟ اضغط هنا

All-oxide spin Seebeck effects

119   0   0.0 ( 0 )
 نشر من قبل Zhiyong Qiu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of longitudinal spin Seebeck effects (LSSE) in an all-oxide bilayer system comprising an IrO$_2$ film and an Y$_3$Fe$_5$O$_{12}$ film. Spin currents generated by a temperature gradient across the IrO$_2$/Y$_3$Fe$_5$O$_{12}$ interface were detected as electric voltage via the inverse spin Hall effect in the conductive IrO$_2$ layer. This electric voltage is proportional to the magnitude of the temperature gradient and its magnetic field dependence is well consistent with the characteristic of the LSSE. This demonstration may lead to the realization of low-cost, stable, and transparent spin-current-driven thermoelectric devices.



قيم البحث

اقرأ أيضاً

Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic i nsulator yttrium iron garnet (YIG) concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans, Phys. Rev. B 90, 064421 (2014). Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert (LLG) equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics
The wide bandgap semiconductor ZnO is interesting for spintronic applications because of its small spin-orbit coupling implying a large spin coherence length. Utilizing vertical spin valve devices with ferromagnetic electrodes (TiN/Co/ZnO/Ni/Au), we study the spin-polarized transport across ZnO in all-electrical experiments. The measured magnetoresistance agrees well with the prediction of a two spin channel model with spin-dependent interface resistance. Fitting the data yields spin diffusion lengths of 10.8nm (2K), 10.7nm (10K), and 6.2nm (200K) in ZnO, corresponding to spin lifetimes of 2.6ns (2K), 2.0ns (10K), and 31ps (200K).
Spin-momentum locking in protected surface states enables efficient electrical detection of magnon decay at a magnetic-insulator/topological-insulator heterojunction. Here we demonstrate this property using the spin Seebeck effect, i.e. measuring the transverse thermoelectric response to a temperature gradient across a thin film of yttrium iron garnet, an insulating ferrimagnet, and forming a heterojunction with (BixSb1-x)2Te3, a topological insulator. The non-equilibrium magnon population established at the interface can decay in part by interactions of magnons with electrons near the Fermi energy of the topological insulator. When this decay channel is made active by tuning (BixSb1-x)2Te3 to a bulk insulator, a large electromotive force emerges in the direction perpendicular to the in-plane magnetization of yttrium iron garnet. The enhanced, tunable spin Seebeck effect which occurs when the Fermi level lies in the bulk gap offers unique advantages over the usual spin Seebeck effect in metals and therefore opens up exciting possibilities in spintronics.
121 - C. Fang , C. H. Wan , Z. H. Yuan 2015
Recently, Seebeck coefficients of ferromagnetic conductors are found to be spin-dependent. However straightforward method of accurately determining its spin polarization is still to be developed. Here, we have derived a linear dependence of anomalous Nernst coefficient on anomalous Hall angle with scaling factor related to spin polarization of Seebeck coefficient, which has been experimentally verified in [Co/Pt]n superlattices. Based on the dependence, we have also evaluated spin polarization of Seebeck coefficient of some ferromagnetic conductors. Besides, we have also found a new mechanism to generate pure spin current from temperature gradient in ferromagnetic/nonmagnetic hybrid system, which could improve efficiency from thermal energy to spin current.
The spin diffusion length for thermally excited magnon spins is measured by utilizing a non-local spin-Seebeck effect measurement. In a bulk single crystal of yttrium iron garnet (YIG) a focused laser thermally excites magnon spins. The spins diffuse laterally and are sampled using a Pt inverse spin Hall effect detector. Thermal transport modeling and temperature dependent measurements demonstrate the absence of spurious temperature gradients beneath the Pt detector and confirm the non-local nature of the experimental geometry. Remarkably, we find that thermally excited magnon spins in YIG travel over 120 $mu$m at 23 K, indicating that they are robust against inelastic scattering. The spin diffusion length is found to be at least 47 $mu$m and as high as 73 $mu$m at 23 K in YIG, while at room temperature it drops to less than 10 $mu$m. Based on this long spin diffusion length, we envision the development of thermally powered spintronic devices based on electrically insulating, but spin conducting materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا