ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining Spin Polarization of Seebeck Coefficients via Anomalous Nernst Effect

117   0   0.0 ( 0 )
 نشر من قبل Xiufeng Han Prof. Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, Seebeck coefficients of ferromagnetic conductors are found to be spin-dependent. However straightforward method of accurately determining its spin polarization is still to be developed. Here, we have derived a linear dependence of anomalous Nernst coefficient on anomalous Hall angle with scaling factor related to spin polarization of Seebeck coefficient, which has been experimentally verified in [Co/Pt]n superlattices. Based on the dependence, we have also evaluated spin polarization of Seebeck coefficient of some ferromagnetic conductors. Besides, we have also found a new mechanism to generate pure spin current from temperature gradient in ferromagnetic/nonmagnetic hybrid system, which could improve efficiency from thermal energy to spin current.



قيم البحث

اقرأ أيضاً

We identify and investigate thermal spin transport phenomena in sputter-deposited Pt/NiFe$_2$O$_{textrm{4-x}}$ ($4geq x geq 0$) bilayers. We separate the voltage generated by the spin Seebeck effect from the anomalous Nernst effect contributions and even disentangle the intrinsic anomalous Nernst effect (ANE) in the ferromagnet (FM) from the ANE produced by the Pt that is spin polarized due to its proximity to the FM. Further, we probe the dependence of these effects on the electrical conductivity and the band gap energy of the FM film varying from nearly insulating NiFe$_2$O$_4$ to metallic Ni$_{33}$Fe$_{67}$. A proximity-induced ANE could only be identified in the metallic Pt/Ni$_{33}$Fe$_{67}$ bilayer in contrast to Pt/NiFe$_2$O$_{rm x}$ ($x>0$) samples. This is verified by the investigation of static magnetic proximity effects via x-ray resonant magnetic reflectivity.
Thermoelectric properties of a model Skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transvers e thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among Skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed here.
Spin orbit torque has been intensively investigated because of its high energy efficiency in manipulating a magnetization. Although various methods for measuring the spin orbit torque have been developed so far, the measurement results often show inc onsistency among the methods, implying that an electromotive force, such as Nernst effect, irrelevant to the spin orbit torque may affect the measurement results as an artifact. In this letter, we developed a unique method to distinguish the spin orbit torque and the anomalous Nernst effect. The measurement results show that the spin orbit torque can be underestimated up to 50% under the influence of the anomalous Nernst effect.
Spin Seebeck effect (SSE) holds promise for new spintronic devices with low-energy consumption. The underlying physics, essential for a further progress, is yet to be fully clarified. This study of the time resolved longitudinal SSE in the magnetic i nsulator yttrium iron garnet (YIG) concludes that a substantial contribution to the spin current stems from small wave-vector subthermal exchange magnons. Our finding is in line with the recent experiment by S. R. Boona and J. P. Heremans, Phys. Rev. B 90, 064421 (2014). Technically, the spin-current dynamics is treated based on the Landau-Lifshitz-Gilbert (LLG) equation also including magnons back-action on thermal bath, while the formation of the time dependent thermal gradient is described self-consistently via the heat equation coupled to the magnetization dynamics
In metallic ferromagnets, the Berry curvature of underlying quasiparticles can cause an electric voltage perpendicular to both magnetization and an applied temperature gradient, a phenomenon called the anomalous Nernst effect (ANE). Here, we report t he observation of a giant ANE in the full-Heusler ferromagnet Co$_2$MnGa, reaching $S_{yx}sim -6$ $mu$V/K at room $T$, one order of magnitude larger than the maximum value reported for a magnetic conductor. With increasing temperature, the transverse thermoelectric conductivity or Peltier coefficient $alpha_{yx}$ shows a crossover between $T$-linear and $-T log(T)$ behaviors, indicating the violation of Mott formula at high temperatures. Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions is responsible for the observed crossover properties and an enhanced $alpha_{yx}$. The $T$ dependence of $alpha_{yx}$ in experiments and numerical calculations can be understood in terms of a quantum critical scaling function predicted by the low energy effective theory over more than a decade of temperatures. Moreover, the observation of chiral anomaly or an unsaturated positive longitudinal magnetoconductance also provide evidence for the existence of Weyl fermions in Co$_2$MnGa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا