ﻻ يوجد ملخص باللغة العربية
We examine characteristics of circumbinary orbits in the context of current planet formation scenarios. Analytical perturbation theory predicts the existence of nested circumbinary orbits that are generalizations of circular paths around a single star. These orbits have forced eccentric motion aligned with the binary as well as higher frequency oscillations, yet they do not cross, even in the presence of massive disks and perturbations from large planets. For this reason, dissipative gas and planetesimals can settle onto these most circular orbits, facilitating the growth of protoplanets. Outside a region close to the binary where orbits are generally unstable, circumbinary planets form in much the same way as their cousins around a single star. Here, we review the theory and confirm its predictions with a suite of representative simulations. We then consider the circumbinary planets discovered with NASAs Kepler satellite. These Neptune- and Jupiter-size planets, or their planetesimal precursors, may have migrated inward to reach their observed orbits, since their current positions are outside of unstable zones caused by overlapping resonances. In situ formation without migration seems less likely, only because the surface density of the protoplanetary disks must be implausibly high. Otherwise, the circumbinary environment is friendly to planet formation, and we expect that many Earth-like Tatooines will join the growing census of circumbinary planets.
Identifying planets around O-type and B-type stars is inherently difficult; the most massive known planet host has a mass of only about $3M_{odot}$. However, planetary systems which survive the transformation of their host stars into white dwarfs can
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 M_{odot}$ and $0.1 M_{odot}$. Based on the extrapolation
Habitable zones are regions around stars where large bodies of liquid water can be sustained on a planet or satellite. As many stars form in binary systems with non-zero eccentricity, the habitable zones around the component stars of the binary can o
Planets are observed to orbit the component star(s) of stellar binary systems on so-called circumprimary or circumsecondary orbits, as well as around the entire binary system on so-called circumbinary orbits. Depending on the orbital parameters of th
We report detection of quasi-periodic (1.5 day) dimming of HD 240779, the solar-mass primary in a 5 visual binary (also TIC 284730577), by the Transiting Exoplanet Survey Satellite. This dimming, as has been shown for other dipper stars, is likely du