Submillimetre (submm) observations of WISE-selected, dusty, luminous, high-redshift galaxies have revealed intriguing overdensities around them on arcmin scales. They could be the best signposts of overdense environments on the sky.
We investigate extremely luminous dusty galaxies in the environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively. Previous
observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ~ 2 - 3 and ~ 5 - 6 , respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the SCUBA-2 Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-IR colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find the star formation rate density (SFRDs) are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5arcmin scale maps.
We have observed the environments of a population of 33 heavily dust obscured, ultra-luminous, high-redshift galaxies, selected using WISE and NVSS at $z>$1.3 with the Infra-Red Array Camera on the $Spitzer$ Space Telescope over $rm5.12,times5.12,$ f
ields. Colour selections are used to quantify any potential overdensities of companion galaxies in these fields. We find no significant excess of galaxies with the standard colour selection for IRAC colours of $rm[3.6]-[4.5]>-0.1$ consistent with galaxies at $z>$1.3 across the whole fields with respect to wide-area $Spitzer$ comparison fields, but there is a $rm>2sigma$ statistical excess within $rm0.25,$ of the central radio-WISE galaxy. Using a colour selection of $rm[3.6]-[4.5]>0.4$, 0.5 magnitudes redder than the standard method of selecting galaxies at $z>$1.3, we find a significant overdensity, in which $rm76%$ ($rm33%$) of the 33 fields have a surface density greater than the $rm3sigma$ ($rm5sigma$) level. There is a statistical excess of these redder galaxies within $rm0.5,$, rising to a central peak $rmsim2$--4 times the average density. This implies that these galaxies are statistically linked to the radio-WISE selected galaxy, indicating similar structures to those traced by red galaxies around radio-loud AGN.
We present near-IR photometry and spectroscopy of 30 extremely luminous radio and mid-IR selected galaxies. With bolometric luminosities exceeding $sim10^{13}$ $rm{L_{odot}}$ and redshifts ranging from $z = 0.880-2.853$, we use VLT instruments X-shoo
ter and ISAAC to investigate this unique population of galaxies. Broad multi-component emission lines are detected in 18 galaxies and we measure the near-IR lines $rm{Hrm{beta}}$, $text{[OIII]}rm{lambda}rm{lambda}4959,5007$ and $rm{Hrm{alpha}}$ in six, 15 and 13 galaxies respectively, with 10 $rm{Lyalpha}$ and five CIV lines additionally detected in the UVB arm. We use the broad $text{[OIII]}rm{lambda}5007$ emission lines as a proxy for the bolometric AGN luminosity, and derive lower limits to supermassive black hole masses of $10^{7.9}$-$10^{9.4}$ $text{M}_{odot}$ with expectations of corresponding host masses of $10^{10.4}$-$10^{12.0}$ $text{M}_{odot}$. We measure $rm{lambda}_{Edd}$ > 1 for eight of these sources at a $2sigma$ significance. Near-IR photometry and SED fitting are used to compare stellar masses directly. We detect both Balmer lines in five galaxies and use these to infer a mean visual extinction of $A_{V}$ = 2.68 mag. Due to non-detections and uncertainties in our $rm{Hrm{beta}}$ emission line measurements, we simulate a broad $rm{Hrm{beta}}$ line of FWHM = 1480 $rm{kms^{-1}}$ to estimate extinction for all sources with measured $rm{Hrm{alpha}}$ emission. We then use this to infer a mean $A_{V}=3.62$ mag, demonstrating the highly-obscured nature of these galaxies, with the consequence of increasing our estimates of black-hole masses by an 0.5 orders of magnitude in the most extreme and obscured cases.
We present an ALMA 1.3 mm (Band 6) continuum survey of lensed submillimeter galaxies (SMGs) at $z=1.0sim3.2$ with an angular resolution of $sim0.2$. These galaxies were uncovered by the Herschel Lensing Survey (HLS), and feature exceptionally bright
far-infrared continuum emission ($S_mathrm{peak} gtrsim 90$ mJy) owing to their lensing magnification. We detect 29 sources in 20 fields of massive galaxy clusters with ALMA. Using both the Spitzer/IRAC (3.6/4.5 $mathrm{mu m}$) and ALMA data, we have successfully modeled the surface brightness profiles of 26 sources in the rest-frame near- and far-infrared. Similar to previous studies, we find the median dust-to-stellar continuum size ratio to be small ($R_mathrm{e,dust}/R_mathrm{e,star} = 0.38pm0.14$) for the observed SMGs, indicating that star formation is centrally concentrated. This is, however, not the case for two spatially extended main-sequence SMGs with a low surface brightness at 1.3 mm ($lesssim 0.1$ mJy arcsec$^{-2}$), in which the star formation is distributed over the entire galaxy ($R_mathrm{e,dust}/R_mathrm{e,star}>1$). As a whole, our SMG sample shows a tight anti-correlation between ($R_mathrm{e,dust}/R_mathrm{e,star}$) and far-infrared surface brightness ($Sigma_mathrm{IR}$) over a factor of $simeq$ 1000 in $Sigma_mathrm{IR}$. This indicates that SMGs with less vigorous star formation (i.e., lower $Sigma_mathrm{IR}$) lack central starburst and are likely to retain a broader spatial distribution of star formation over the whole galaxies (i.e., larger $R_mathrm{e,dust}/R_mathrm{e,star}$). The same trend can be reproduced with cosmological simulations as a result of central starburst and potentially subsequent inside-out quenching, which likely accounts for the emergence of compact quiescent galaxies at $zsim2$.
Previous studies have shown that WISE-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick AGNs. High obscuration provides us a good chance to study the host morphology of the most
luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at $zsim3$ using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction ($62pm 14 %$). By fitting the surface brightness profiles, we find that the distribution of Sersic indices in our Hot DOG sample peaks around 2, which suggests that most of Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity ($sim10^{14}L_odot$) of our Hot DOG sample by using IR SEDs decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction (Hickox et al. 2014). Both the high merger fraction in IR-luminous AGN sample and relatively low merger fraction in UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst dominated phase to the unobscured QSO phase.