ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA 1.3 mm Survey of Lensed Submillimeter Galaxies (SMGs) Selected by Herschel: Discovery of Spatially Extended SMGs and Implications

143   0   0.0 ( 0 )
 نشر من قبل Fengwu Sun
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an ALMA 1.3 mm (Band 6) continuum survey of lensed submillimeter galaxies (SMGs) at $z=1.0sim3.2$ with an angular resolution of $sim0.2$. These galaxies were uncovered by the Herschel Lensing Survey (HLS), and feature exceptionally bright far-infrared continuum emission ($S_mathrm{peak} gtrsim 90$ mJy) owing to their lensing magnification. We detect 29 sources in 20 fields of massive galaxy clusters with ALMA. Using both the Spitzer/IRAC (3.6/4.5 $mathrm{mu m}$) and ALMA data, we have successfully modeled the surface brightness profiles of 26 sources in the rest-frame near- and far-infrared. Similar to previous studies, we find the median dust-to-stellar continuum size ratio to be small ($R_mathrm{e,dust}/R_mathrm{e,star} = 0.38pm0.14$) for the observed SMGs, indicating that star formation is centrally concentrated. This is, however, not the case for two spatially extended main-sequence SMGs with a low surface brightness at 1.3 mm ($lesssim 0.1$ mJy arcsec$^{-2}$), in which the star formation is distributed over the entire galaxy ($R_mathrm{e,dust}/R_mathrm{e,star}>1$). As a whole, our SMG sample shows a tight anti-correlation between ($R_mathrm{e,dust}/R_mathrm{e,star}$) and far-infrared surface brightness ($Sigma_mathrm{IR}$) over a factor of $simeq$ 1000 in $Sigma_mathrm{IR}$. This indicates that SMGs with less vigorous star formation (i.e., lower $Sigma_mathrm{IR}$) lack central starburst and are likely to retain a broader spatial distribution of star formation over the whole galaxies (i.e., larger $R_mathrm{e,dust}/R_mathrm{e,star}$). The same trend can be reproduced with cosmological simulations as a result of central starburst and potentially subsequent inside-out quenching, which likely accounts for the emergence of compact quiescent galaxies at $zsim2$.



قيم البحث

اقرأ أيضاً

Submillimetre (submm) observations of WISE-selected, dusty, luminous, high-redshift galaxies have revealed intriguing overdensities around them on arcmin scales. They could be the best signposts of overdense environments on the sky.
376 - Mark Swinbank 2013
We exploit ALMA 870um (345GHz) observations of submillimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift submillimetre galaxies (SMGs). Using the precisely located 870um ALMA positions of 99 SMGs, together with 24um and radio imaging of this field, we deblend the Herschel/SPIRE imaging of this region to extract their far-infrared fluxes and colours. The median photometric redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their SEDs, with z=2.3+/-0.2, 2.5+/-0.3 and 3.5+/-0.5 for the 250, 350 and 500-um peakers respectively. We find that 34 ALESS SMGs do not have a >3-sigma counterpart at 250, 350 or 500-um. These galaxies have a median photometric redshift of z=3.3+/-0.5, which is higher than the full ALESS SMG sample; z=2.5+/-0.2. Using the photometric redshifts together with the 250-870um photometry, we estimate the far-infrared luminosities and characteristic dust temperature of each SMG. The median infrared luminosity of the S_870um>2mJy SMGs is L_IR=(3.0+/-0.3)x10^{12}Lo(SFR=300+/-30Mo/yr). At a fixed luminosity, the characteristic dust temperature of these high-redshift SMGs is 2-3K lower than comparably luminous galaxies at z=0, reflecting the more extended star formation occurring in these systems. By extrapolating the 870um number counts to S_ 870um=1mJy, we show that the contribution of S_870um>1mJy SMGs to the cosmic star formation budget is 20% of the total over the redshift range z~1-4. We derive a median dust mass for these SMGs of M_d=(3.6+/-0.3)x10^8Mo and by adopting an appropriate gas-to-dust ratio, we estimate an average molecular mass of M_H2=(4.2+/-0.4)x10^{10}Mo. Finally, we use our estimates of the H2 masses to show that SMGs with S_870um>1mJy contain ~10% of the z~2 volume-averaged H2 mass density at this epoch.
We investigate extremely luminous dusty galaxies in the environments around WISE-selected hot dust obscured galaxies (Hot DOGs) and WISE/radio-selected active galactic nuclei (AGNs) at average redshifts of z = 2.7 and z = 1.7, respectively. Previous observations have detected overdensities of companion submillimetre-selected sources around 10 Hot DOGs and 30 WISE/radio AGNs, with overdensities of ~ 2 - 3 and ~ 5 - 6 , respectively. We find that the space densities in both samples to be overdense compared to normal star-forming galaxies and submillimetre galaxies (SMGs) in the SCUBA-2 Cosmology Legacy Survey (S2CLS). Both samples of companion sources have consistent mid-IR colours and mid-IR to submm ratios as SMGs. The brighter population around WISE/radio AGNs could be responsible for the higher overdensity reported. We also find the star formation rate density (SFRDs) are higher than the field, but consistent with clusters of dusty galaxies. WISE-selected AGNs appear to be good signposts for protoclusters at high redshift on arcmin scales. The results reported here provide an upper limit to the strength of angular clustering using the two-point correlation function. Monte Carlo simulations show no angular correlation, which could indicate protoclusters on scales larger than the SCUBA-2 1.5arcmin scale maps.
We present Atacama Large Millimetre Array (ALMA) 2mm continuum observations of a complete and unbiased sample of 99 870micron-selected sub-millimeter galaxies (SMGs) in the Extended Chandra Deep Field South (ALESS). Our observations of each SMG reach average sensitivities of 53 microJy/beam. We measure the flux densities for 70 sources, for which we obtain a typical 870micron-to-2mm flux ratio of 14 +/- 5. We do not find a redshift dependence of this flux ratio, which would be expected if the dust emission properties of our SMGs were the same at all redshifts. By combining our ALMA measurements with existing Herschel/SPIRE observations, we construct a (biased) subset of 27 galaxies for which the cool dust emission is sufficiently well sampled to obtain precise constraints on their dust properties using simple isothermal models. Thanks to our new 2mm observations, the dust emissivity index is well-constrained and robust against different dust opacity assumptions. The median dust emissivity index of our SMGs is $betasimeq1.9pm0.4$, consistent with the emissivity index of dust in the Milky Way and other local and high-redshift galaxies, as well as classical dust grain model predictions. We also find a negative correlation between the dust temperature and $beta$, similar to low-redshift observational and theoretical studies. Our results indicate that $betasimeq2$ in high-redshift dusty star-forming galaxies, implying little evolution in dust grain properties between our SMGs and local dusty galaxy samples, and suggesting these high-mass and high-metallicity galaxies have dust reservoirs driven by grain growth in their ISM.
We present the first aperture synthesis unbiased spectral line survey toward an extragalactic object. The survey covered the 40 GHz frequency range between 202 and 242 GHz of the 1.3 mm atmospheric window. We find that 80% of the observed band shows molecular emission, with 73 features identified from 15 molecular species and 6 isotopologues. The 13C isotopic substitutions of HC3N and transitions from H2(18)O, 29SiO, and CH2CO are detected for the first time outside the Galaxy. Within the broad observed band, we estimate that 28% of the total measured flux is due to the molecular line contribution, with CO only contributing 9% to the overall flux. We present maps of the CO emission at a resolution of 2.9x1.9 which, though not enough to resolve the two nuclei, recover all the single-dish flux. The 40 GHz spectral scan has been modelled assuming LTE conditions and abundances are derived for all identified species. The chemical composition of Arp 220 shows no clear evidence of an AGN impact on the molecular emission but seems indicative of a purely starburst-heated ISM. The overabundance of H2S and the low isotopic ratios observed suggest a chemically enriched environment by consecutive bursts of star formation, with an ongoing burst at an early evolutionary stage. The large abundance of water (~10^-5), derived from the isotopologue H2(18)O, as well as the vibrationally excited emission from HC3N and CH3CN are claimed to be evidence of massive star forming regions within Arp 220. Moreover, the observations put strong constraints on the compactness of the starburst event in Arp 220. We estimate that such emission would require ~2-8x10^6 hot cores, similar to those found in the Sgr B2 region in the Galactic center, concentrated within the central 700 pc of Arp 220.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا