ﻻ يوجد ملخص باللغة العربية
High quality single crystals of BaFe$_{12}$O$_{19}$ were grown using the floating zone technique in flowing oxygen pressurized to 100 atm. Single crystal neutron diffraction was used to determine the nuclear and magnetic structure of BaFe$_{12}$O$_{19}$ at 4 K and 295 K. At both temperatures, there exist local electric dipoles formed by the off-mirror-plane displacements of magnetic Fe$^{3+}$ ions at the bipyramidal sites. The displacement at 4 K is about half of that at room temperature. The temperature dependence of the specific heat shows no anomaly associated with long range polar ordering in the temperature range from 1.90-300 K. The inverse dielectric permittivity, $1/varepsilon$, along the c-axis shows a $T^2$ temperature dependence between 10 K and 20 K, with a significantly reduced temperature dependence displayed below 10 K. Moreover, as the sample is cooled below 1.4 K there is an anomalous sharp upturn in $1/varepsilon$. These features resemble those of classic quantum paraelectrics such as SrTiO$_3$. The presence of the upturn in $1/varepsilon$ indicates that BaFe$_{12}$O$_{19}$ is a critical quantum paraelectric system with Fe$^{3+}$ ions involved in both magnetic and electric dipole formation.
Single crystals of the metallic Ruddlesden-Popper trilayer nickelates R$_4$Ni$_3$O$_{10}$ (R=La, Pr) were successfully grown using an optical-image floating zone furnace under oxygen pressure (pO$_2$) of 20 bar for La$_4$Ni$_3$O$_{10}$ and 140 bar fo
We report the growth of large single-crystals of Cu2MnAl, a ferromagnetic Heusler compound suitable for polarizing neutron monochromators, by means of optical floating zone under ultra-high vacuum compatible conditions. Unlike Bridgman or Czochralsky
Single crystals of PrNiO3 were grown under an oxygen pressure of 295 bar using a unique high-pressure optical-image floating zone furnace. The crystals, with volume in excess of 1 mm3, were characterized structurally using single crystal and powder X
We have developed the laser-diode-heated floating zone (LDFZ) method, in order to improve the broad and inhomogeneous light focusing in the conventional lamp-heated floating zone method, which often causes difficulties in the crystal growth especiall
The structural properties of Thallium (III) oxide (Tl2O3) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-