ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nuclear Near-Infrared Spectral Properties of Nearby Galaxies

234   0   0.0 ( 0 )
 نشر من قبل Rachel Mason
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectra of the nuclear regions of 50 nearby (D = 1 - 92 Mpc, median = 20 Mpc) galaxies of morphological types E to Sm. The spectra, obtained with the Gemini Near-IR Spectrograph on the Gemini North telescope, cover a wavelength range of approximately 0.85-2.5 microns at R~1300--1800. There is evidence that most of the galaxies host an active galactic nucleus (AGN), but the range of AGN luminosities (log (L2-10 keV [erg/s]) = 37.0-43.2) in the sample means that the spectra display a wide variety of features. Some nuclei, especially the Seyferts, exhibit a rich emission-line spectrum. Other objects, in particular the type 2 Low Ionisation Nuclear Emission Region galaxies, show just a few, weak emission lines, allowing a detailed view of the underlying stellar population. These spectra display numerous absorption features sensitive to the stellar initial mass function, as well as molecular bands arising in cool stars, and many other atomic absorption lines. We compare the spectra of subsets of galaxies known to be characterised by intermediate-age and old stellar populations, and find clear differences in their absorption lines and continuum shapes. We also examine the effect of atmospheric water vapor on the signal-to-noise ratio achieved in regions between the conventional NIR atmospheric windows, of potential interest to those planning observations of redshifted emission lines or other features affected by telluric H2O. Further exploitation of this data set is in progress, and the reduced spectra and data reduction tools are made available to the community.



قيم البحث

اقرأ أيضاً

119 - R. C. Gleisinger 2021
How do active galactic nuclei with low optical luminosities produce powerful radio emission? Recent studies of active galactic nuclei with moderate radio and low optical luminosities (Fanaroff & Riley class I, FR I) searching for broad nuclear emissi on lines in polarized light, as predicted by some active galactic nucleus unification models, have found heterogeneous results. These models typically consist of a central engine surrounded by a torus of discrete dusty clouds. These clouds would absorb and scatter optical emission, blocking broad nuclear emission lines, and reradiate in mid-infrared. Some scattered broad-line emission may be observable, depending on geometry, which would be polarized. We present a wide-band infrared spectroscopic analysis of 10 nearby FR I radio galaxies to determine whether there is significant emission from a dusty obscuring structure. We used Markov Chain Monte Carlo algorithms to decompose Spitzer/IRS spectra of our sample. We constrained the wide-band behavior of our models with photometry from the Two Micron All Sky Survey, Spitzer/IRAC, Spitzer/MIPS, and Herschel/SPIRE. We find that one galaxy is best fit by a clumpy torus and three others show some thermal mid-infrared component. This suggests that in those three there is likely some obscuring dust structure that is inconsistent with our torus models and there must be some source of photons heating the dust. We conclude that 40% of our FR I radio galaxies show evidence of obscuring dusty material, possibly some other form of hidden broad-line nucleus, but only 10% favor the clumpy torus model specifically.
125 - D. Asmus , S. F. Honig , P. Gandhi 2011
We present ground-based high-spatial resolution mid-infrared (MIR) observations of 20 nearby low-luminosity AGN (LLAGN) with VLT/VISIR and the preliminary analysis of a new sample of 10 low-luminosity Seyferts observed with Gemini/Michelle. LLAGN are of great interest because these objects are the most common among active galaxies, especially in the nearby universe. Studying them in great detail makes it possible to investigate the AGN evolution over cosmic timescale. Indeed, many LLAGN likely represent the final stage of an AGNs lifetime. We show that even at low luminosities and accretion rates nuclear unresolved MIR emission is present in most objects. Compared to lower spatial resolution Spitzer/IRS spectra, the high-resolution MIR photometry exhibits significantly lower fluxes and different PAH emission feature properties in many cases. By using scaled Spitzer/IRS spectra of typical starburst galaxies, we show that the star formation contribution to the 12 micron emission is minor in the central parsecs of most LLAGN. Therefore, the observed MIR emission in the VISIR and Michelle data is most likely emitted by the AGN itself, which, for higher luminosity AGN, is interpreted as thermal emission from a dusty torus. Furthermore, the 12 micron emission of the LLAGN is strongly correlated with the absorption corrected 2-10 keV luminosity and the MIR--X-ray correlation found previously for AGN is extended to a range from 10^40 to 10^45 erg/s. This correlation is independent of the object type, and in particular the low-luminosity Seyferts observed with Michelle fall exactly on the power-law fit valid for brighter AGN. In addition, no dependency of the MIR--X-ray ratio on the accretion rate is found. These results are consistent with the unification model being applicable even in the probed low-luminosity regime.
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out a comprehensive multi-wavelength survey on a sample of 75 nearby galaxies. The 1-850um spectral energy distributions are presented using broadband imaging data from Spitzer, 2MASS, I SO, IRAS, and SCUBA. The infrared colors derived from the globally-integrated Spitzer data are generally consistent with the previous generation of models that were developed based on global data for normal star-forming galaxies, though significant deviations are observed. Spitzers excellent sensitivity and resolution also allow a detailed investigation of the infrared spectral energy distributions for various locations within the three large, nearby galaxies NGC3031 (M81), NGC5194 (M51), and NGC7331. Strong correlations exist between the local star formation rate and the infrared colors f_nu(70um)/f_nu(160um) and f_nu(24um)/f_nu(160um), suggesting that the 24 and 70um emission are useful tracers of the local star formation activity level. Preliminary evidence indicates that variations in the 24um emission, and not variations in the emission from polycyclic aromatic hydrocarbons at 8um, drive the variations in the f_nu(8.0um)/f_nu(24um) colors within NGC3031, NGC5194, and NGC7331. If the galaxy-to-galaxy variations in spectral energy distributions seen in our sample are representative of the range present at high redshift then extrapolations of total infrared luminosities and star formation rates from the observed 24um flux will be uncertain at the factor-of-five level (total range). The corresponding uncertainties using the redshifted 8.0um flux (e.g. observed 24um flux for a z=2 source) are factors of 10-20. Considerable caution should be used when interpreting such extrapolated infrared luminosities.
We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (<4 Mpc), based on F110W and F160W images from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs sample both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in optical CMDs, and identify the red core Helium burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myrs old, suggesting that star formation can drive surprisingly rapid variations in the NIR mass-to-light ratio. The NIR luminosity of star forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual bright RHeB stars may be misidentified as old stellar clusters in low resolution imaging. We also discuss the CMD location of asymptotic giant branch (AGB) stars, and the separation of AGB sub-populations using a combination of optical and NIR colors. We empirically calibrate the NIR magnitude of the tip of the red giant branch (TRGB) as a function of color, allowing this widely adopted filter to be used for distance measurements. We find a clear trend between NIR RGB color and metallicity. However, it appears unlikely that the slope of the NIR RGB can be used as a metallicity indicator in extragalactic systems with comparable data. Finally, we discuss scattered light in the WFC3, which becomes significant for exposures taken close to a bright earth limb.
We present high spatial resolution, medium spectral resolution near-infrared (NIR) H- and K-band long-slit spectroscopy for a sample of 29 nearby (z < 0.01) inactive spiral galaxies, to study the composition of their NIR stellar populations. These sp ectra contain a wealth of diagnostic stellar absorption lines, e.g. MgI 1.575 micron, SiI 1.588 micron, CO (6-3) 1.619 micron, MgI 1.711 micron, NaI 2.207 micron, CaI 2.263 micron and the 12CO and 13CO bandheads longward of 2.29 micron. We use NIR absorption features to study the stellar population and star formation properties of the spiral galaxies along the Hubble sequence, and we produce the first high spatial resolution NIR HK-band template spectra for low redshift spiral galaxies along the Hubble sequence. These templates will find applications in a variety of galaxy studies. The strength of the absorption lines depends on the luminosity and/or temperature of stars and, therefore, spectral indices can be used to trace the stellar population of galaxies. The entire sample testifies that the evolved red stars completely dominate the NIR spectra, and that the hot young star contribution is virtually nonexistent.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا