ترغب بنشر مسار تعليمي؟ اضغط هنا

Proliferation of metallic domains caused by inhomogeneous heating near the electrically-driven transition in VO$_2$ nanobeams

69   0   0.0 ( 0 )
 نشر من قبل Ganapathy Sambandamurthy
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the mechanisms behind the electrically driven insulator-metal transition in single crystalline VO$_2$ nanobeams. Our DC and AC transport measurements and the versatile harmonic analysis method employed show that non-uniform Joule heating causes phase inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO$_{2}$. A Poole-Frenkel like purely electric field induced transition is found to be absent and the role of percolation near and away from the electrically driven transition in VO$_{2}$ is also identified. The results and the harmonic analysis can be generalized to many strongly correlated materials that exhibit electrically driven transitions.



قيم البحث

اقرأ أيضاً

Strain engineering is a powerful technology which exploits stationary external or internal stress of specific spatial distribution for controlling the fundamental properties of condensed materials and nanostructures. This advanced technique modulates in space the carrier density and mobility, the optical absorption and, in strongly correlated systems, the phase, e.g. insulator/metal or ferromagnetic/paramagnetic. However, while successfully accessing nanometer length scale, strain engineering is yet to be brought down to ultrafast time scales allowing strain-assisted control of state of matter at THz frequencies. In our work we demonstrate a control of an optically-driven insulator-to-metal phase transition by a picosecond strain pulse, which paves a way to ultrafast strain engineering in nanostructures with phase transitions. This is realized by simultaneous excitation of VO$_2$ nanohillocks by a 170-fs laser and picosecond strain pulses finely timed with each other. By monitoring the transient optical reflectivity of the VO$_2$, we show that strain pulses, depending on the sign of the strain at the moment of optical excitation, increase or decrease the fraction of VO$_2$ which undergoes an ultrafast phase transition. Transient strain of moderate amplitude $sim0.1$% applied during ultrafast photo-induced non-thermal transition changes the fraction of VO$_2$ in the laser-induced phase by $sim1$%. By contrast, if applied after the photo-excitation when the phase transformations of the material are governed by thermal processes, transient strain of the same amplitude produces no measurable effect on the phase state.
The insulator-to-metal transition (IMT) of the simple binary compound of vanadium dioxide VO$_2$ at $sim 340$ K has been puzzling since its discovery more than five decades ago. A wide variety of photon and electron probes have been applied in search of a satisfactory microscopic mechanistic explanation. However, many of the conclusions drawn have implicitly assumed a {em homogeneous} material response. Here, we reveal inherently {em inhomogeneous} behavior in the study of the dynamics of individual VO$_2$ micro-crystals using a combination of femtosecond pump-probe microscopy with nano-IR imaging. The time scales of the photoinduced bandgap reorganization in the ultrafast IMT vary from $simeq 40 pm 8$ fs, i.e., shorter than a suggested phonon bottleneck, to $sim 200pm20$ fs, with an average value of $80 pm 25$ fs, similar to results from previous studies on polycrystalline thin films. The variation is uncorrelated with crystal size, orientation, transition temperature, and initial insulating phase. This together with details of the nano-domain behavior during the thermally-induced IMT suggests a significant sensitivity to local variations in, e.g., doping, defects, and strain of the microcrystals. The combination of results points to an electronic mechanism dominating the photoinduced IMT in VO$_2$, but also highlights the difficulty of deducing mechanistic information where the intrinsic response in correlated matter may not yet have been reached.
We report the simultaneous measurement of the structural and electronic components of the metal-insulator transition of VO$_2$ using electron and photoelectron spectroscopies and microscopies. We show that these evolve over different temperature scal es, and are separated by an unusual monoclinic-like metallic phase. Our results provide conclusive evidence that the new monoclinic-like metallic phase, recently identified in high-pressure and nonequilibrium measurements, is accessible in the thermodynamic transition at ambient pressure, and we discuss the implications of these observations on the nature of the MIT in VO$_2$.
In order to study the origin of metallization of VO$_2$ induced by electron injection, we deposit K atoms onto the surface of VO$_2$ films grown on TiO$_2$ (001) substrates, and we investigate the change in the electronic and crystal structures using ${in~situ}$ photoemission spectroscopy and x-ray absorption spectroscopy (XAS). The deposition of K atoms onto a surface of insulating monoclinic VO$_2$ leads to a phase transition from insulator to metal. In this metallization state, the V-V dimerization characteristic to the monoclinic phase of VO$_2$ still exists, as revealed by the polarization dependence of the XAS spectra. Furthermore, the monoclinic metal undergoes a transition to a monoclinic insulator with decrease in temperature, and to a rutile metal with increase in temperature. These results indicate the existence of a metallic monoclinic phase around the boundary between the insulating monoclinic and metallic rutile phases in the case of electron-doped VO$_2$.
116 - J. Laverock , , A. R. H. Preston 2012
We present a spectroscopic study that reveals that the metal-insulator transition of strained VO$_2$ thin films may be driven towards a purely electronic transition, which does not rely on the Peierls dimerization, by the application of mechanical st rain. Comparison with a moderately strained system, which does involve the lattice, demonstrates the crossover from Peierls- to Mott-like transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا