ترغب بنشر مسار تعليمي؟ اضغط هنا

A combined first-principles and thermodynamic approach to M-Nitronyl Nitroxide (M=Co, Mn) spin helices

27   0   0.0 ( 0 )
 نشر من قبل Alessandro Vindigni
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of two molecular-based magnetic helices, composed of 3$d$ metal Co and Mn ions bridged by Nitronyl Nitroxide radicals, are investigated by density functional calculations. Their peculiar and distinctive magnetic behavior is here elucidated by a thorough description of their magnetic, electronic, and anisotropy properties. Metal ions are antiferromagnetically coupled with the radicals, leading to a ferrimagnetically ordered ground state. A strong metal-radical exchange coupling is found, about 44 meV and 48 meV for Co- and Mn-helices, respectively. The latter have also relevant next-nearest-neighbor Mn-Mn antiferromagnetic interactions (of $sim$ 6 meV). Co-sites are characterized by non-collinear uniaxial anisotropies, whereas Mn-sites are rather isotropic. A key result pertains to the Co-helix: the microscopic picture resulting from density-functional calculations allows us to propose a spin Hamiltonian of increased complexity with respect to the commonly employed Ising Hamiltonian, suitable for the study of finite-temperature behavior, and that seems to clarify the puzzling scenario of multiple characteristic energy scales observed in experiments.

قيم البحث

اقرأ أيضاً

Fe$M_2X_4$ spinels, where $M$ is a transition metal and $X$ is oxygen or sulfur, are candidate materials for spin filters, one of the key devices in spintronics. We present here a computational study of the inversion thermodynamics and the electronic structure of these (thio)spinels for $M=$ Cr, Mn, Co, Ni, using calculations based on the density functional theory with on-site Hubbard corrections (DFT+$U$). The analysis of the configurational free energies shows that different behaviour is expected for the equilibrium cation distributions in these structures: FeCr$_2X_4$ and FeMn$_2$S$_4$ are fully normal, FeNi$_2X_4$ and FeCo$_2$S$_4$ are intermediate, and FeCo$_2$O$_4$ and FeMn$_2$O$_4$ are fully inverted. We have analyzed the role played by the size of the ions and by the crystal field stabilization effects in determining the equilibrium inversion degree. We also discuss how the electronic and magnetic structure of these spinels is modified by the degree of inversion, assuming that this could be varied from the equilibrium value. We have obtained electronic densities of states for the completely normal and completely inverse cation distribution of each compound. FeCr$_2X_4$, FeMn$_2X_4$, FeCo$_2$O$_4$ and FeNi$_2$O$_4$ are half-metals in the ferrimagnetic state when Fe is in tetrahedral positions. When $M$ is filling the tetrahedral positions, the Cr-containing compounds and FeMn$_2$O$_4$ are half-metallic systems, while the Co and Ni spinels are insulators. The Co and Ni sulfide counterparts are metallic for any inversion degree together with the inverse FeMn$_2$S$_4$. Our calculations suggest that the spin filtering properties of the Fe$M_2X_4$ (thio)spinels could be modified via the control of the cation distribution through variations in the synthesis conditions.
We have performed systematic density functional calculations and evaluated thermoelectric properties, See- beck coefficient and anomalous Nernst coefficient of half-Heusler comounds CoMSb(M=Sc, Ti, V, Cr, and Mn). The carrier concentration dependence of Seebeck coefficients in nonmagnetic compounds are in good agreement with experimental values. We found that the half-metallic ferromagnetic CoMnSb show large anomalous Nernst effect originating from Berry curvature at the Brillouin zone boundary. These results help to understanding for the mechanism of large anomalous Nernst coefficient and give us a clue to design high performance magnetic thermoelectric materials.
New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 oC. All samples are monoclinic, space group P21/n, as obtained from Rietveld analysis of X-r ay powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2+ through super-superexchange paths M2+ - O2- - Sb5+ - O2- - M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2+ respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+ - O2- - Mn2+.
A description of non-collinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham sca lar potential and magnetic field are derived within the optimized effective potential (OEP) framework. With the example of a magnetically frustrated Cr monolayer it is shown that the resulting magnetization density exhibits much more non-collinear structure than standard calculations. Furthermore, a time-dependent generalization of the non-collinear OEP method is well suited for an ab-initio description of spin dynamics. We also show that the magnetic moments of solids Fe, Co and Ni are well reproduced.
Electronic and magnetic properties of Ga$_{1-x}$Mn$_{x}$As, obtained from first-principles calculations employing the hybrid HSE06 functional, are presented for $x=6.25%$ and $12.5%$ under pressures ranging from 0 to 15 GPa. In agreement with photoem ission experiments at ambient pressure, we find for $x=6.25%$ that non-hybridized Mn-3$d$ levels and Mn-induced states reside about 5 and 0.4 eV below the Fermi energy, respectively. For elevated pressures, the Mn-3$d$ levels, Mn-induced states, and the Fermi level shift towards higher energies, however, the position of the Mn-induced states relative to the Fermi energy remains constant due to hybridization of the Mn-3$d$ levels with the valence As-4$p$ orbitals. We also evaluate, employing Monte Carlo simulations, the Curie temperature ($T_{{rm C}}$). At zero pressure, we obtain $T_{{rm C}}=181$K, whereas the pressure-induced changes in $T_{{rm C}}$ are d$T_{{rm C}}$/d$p=+4.3$K/GPa for $x=12.5%$ and an estimated value of d$T_{{rm C}}$/d$papprox+2.2$K/GPa for $x=6.25%$ under pressures up to 6 GPa. The determined values of d$T_{{rm C}}$/d$p$ compare favorably with d$T_{{rm C}}$/d$p=+$(2-3) K/GPa at $pleq1.2$GPa found experimentally and estimated within the $p$-$d$ Zener model for Ga$_{0.93}$Mn$_{0.07}$As in the regime where hole localization effects are of minor importance [M. Gryglas-Borysiewicz $et$ $al$., Phys. Rev. B ${bf 82}$, 153204 (2010)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا