ﻻ يوجد ملخص باللغة العربية
Systematic errors are inevitable in most measurements performed in real life because of imperfect measurement devices. Reducing systematic errors is crucial to ensuring the accuracy and reliability of measurement results. To this end, delicate error-compensation design is often necessary in addition to device calibration to reduce the dependence of the systematic error on the imperfection of the devices. The art of error-compensation design is well appreciated in nuclear magnetic resonance system by using composite pulses. In contrast, there are few works on reducing systematic errors in quantum optical systems. Here we propose an error-compensation design to reduce the systematic error in projective measurements on a polarization qubit. It can reduce the systematic error to the second order of the phase errors of both the half-wave plate (HWP) and the quarter-wave plate (QWP) as well as the angle error of the HWP. This technique is then applied to experiments on quantum state tomography on polarization qubits, leading to a 20-fold reduction in the systematic error. Our study may find applications in high-precision tasks in polarization optics and quantum optics.
The Eastin-Knill theorem states that no quantum error correcting code can have a universal set of transversal gates. For self-dual CSS codes that can implement Clifford gates transversally it suffices to provide one additional non-Clifford gate, such
We investigate quantum error correction using continuous parity measurements to correct bit-flip errors with the three-qubit code. Continuous monitoring of errors brings the benefit of a continuous stream of information, which facilitates passive err
Optimization or sampling of arbitrary pairwise Ising models, in a quantum annealing protocol of constrained interaction topology, can be enabled by a minor-embedding procedure. The logical problem of interest is transformed to a physical (device prog
Experimental realization of stabilizer-based quantum error correction (QEC) codes that would yield superior logical qubit performance is one of the formidable task for state-of-the-art quantum processors. A major obstacle towards realizing this goal
We provide a systematic way of constructing entanglement-assisted quantum error-correcting codes via graph states in the scenario of preexisting perfectly protected qubits. It turns out that the preexisting entanglement can help beat the quantum Hamm