ﻻ يوجد ملخص باللغة العربية
We investigate quantum error correction using continuous parity measurements to correct bit-flip errors with the three-qubit code. Continuous monitoring of errors brings the benefit of a continuous stream of information, which facilitates passive error tracking in real time. It reduces overhead from the standard gate-based approach that periodically entangles and measures additional ancilla qubits. However, the noisy analog signals from continuous parity measurements mandate more complicated signal processing to interpret syndromes accurately. We analyze the performance of several practical filtering methods for continuous error correction and demonstrate that they are viable alternatives to the standard ancilla-based approach. As an optimal filter, we discuss an unnormalized (linear) Bayesian filter, with improved computational efficiency compared to the related Wonham filter introduced by Mabuchi [New J. Phys. 11, 105044 (2009)]. We compare this optimal continuous filter to two practical variations of the simplest periodic boxcar-averaging-and-thresholding filter, targeting real-time hardware implementations with low-latency circuitry. As variations, we introduce a non-Markovian ``half-boxcar filter and a Markovian filter with a second adjustable threshold; these filters eliminate the dominant source of error in the boxcar filter, and compare favorably to the optimal filter. For each filter, we derive analytic results for the decay in average fidelity and verify them with numerical simulations.
Quantum error correction (QEC) is required for a practical quantum computer because of the fragile nature of quantum information. In QEC, information is redundantly stored in a large Hilbert space and one or more observables must be monitored to reve
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to real
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates C
In quantum physics, measurement error and disturbance were first naively thought to be simply constrained by the Heisenberg uncertainty relation. Later, more rigorous analysis showed that the error and disturbance satisfy more subtle inequalities. Sever
We investigate the utility of parity detection to achieve Heisenberg-limited phase estimation for optical interferometry. We consider the parity detection with several input states that have been shown to exhibit sub shot-noise interferometry with th