ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid coding of visual content and local image features

94   0   0.0 ( 0 )
 نشر من قبل Luca Baroffio
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Distributed visual analysis applications, such as mobile visual search or Visual Sensor Networks (VSNs) require the transmission of visual content on a bandwidth-limited network, from a peripheral node to a processing unit. Traditionally, a Compress-Then-Analyze approach has been pursued, in which sensing nodes acquire and encode the pixel-level representation of the visual content, that is subsequently transmitted to a sink node in order to be processed. This approach might not represent the most effective solution, since several analysis applications leverage a compact representation of the content, thus resulting in an inefficient usage of network resources. Furthermore, coding artifacts might significantly impact the accuracy of the visual task at hand. To tackle such limitations, an orthogonal approach named Analyze-Then-Compress has been proposed. According to such a paradigm, sensing nodes are responsible for the extraction of visual features, that are encoded and transmitted to a sink node for further processing. In spite of improved task efficiency, such paradigm implies the central processing node not being able to reconstruct a pixel-level representation of the visual content. In this paper we propose an effective compromise between the two paradigms, namely Hybrid-Analyze-Then-Compress (HATC) that aims at jointly encoding visual content and local image features. Furthermore, we show how a target tradeoff between image quality and task accuracy might be achieved by accurately allocating the bitrate to either visual content or local features.



قيم البحث

اقرأ أيضاً

Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks, while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the Bag-of-Visual-Word (BoVW) model. Several applications, including for example visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget, while attaining a target level of efficiency. In this paper we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can be conveniently adopted to support the Analyze-Then-Compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the Compress-Then-Analyze (CTA) paradigm. In this paper we experimentally compare ATC and CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: homography estimation and content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with CTA, especially in bandwidth limited scenarios.
53 - Ya Zhou , Zhibo Chen , 2018
Visual comfort is a quite important factor in 3D media service. Few research efforts have been carried out in this area especially in case of 3D content retargeting which may introduce more complicated visual distortions. In this paper, we propose a Hybrid Distortion Aggregated Visual Comfort Assessment (HDA-VCA) scheme for stereoscopic retargeted images (SRI), considering aggregation of hybrid distortions including structure distortion, information loss, binocular incongruity and semantic distortion. Specifically, a Local-SSIM feature is proposed to reflect the local structural distortion of SRI, and information loss is represented by Dual Natural Scene Statistics (D-NSS) feature extracted from the binocular summation and difference channels. Regarding binocular incongruity, visual comfort zone, window violation, binocular rivalry, and accommodation-vergence conflict of human visual system (HVS) are evaluated. Finally, the semantic distortion is represented by the correlation distance of paired feature maps extracted from original stereoscopic image and its retargeted image by using trained deep neural network. We validate the effectiveness of HDA-VCA on published Stereoscopic Image Retargeting Database (SIRD) and two stereoscopic image databases IEEE-SA and NBU 3D-VCA. The results demonstrate HDA-VCAs superior performance in handling hybrid distortions compared to state-of-the-art VCA schemes.
Today, according to the Cisco Annual Internet Report (2018-2023), the fastest-growing category of Internet traffic is machine-to-machine communication. In particular, machine-to-machine communication of images and videos represents a new challenge an d opens up new perspectives in the context of data compression. One possible solution approach consists of adapting current human-targeted image and video coding standards to the use case of machine consumption. Another approach consists of developing completely new compression paradigms and architectures for machine-to-machine communications. In this paper, we focus on image compression and present an inference-time content-adaptive finetuning scheme that optimizes the latent representation of an end-to-end learned image codec, aimed at improving the compression efficiency for machine-consumption. The conducted experiments show that our online finetuning brings an average bitrate saving (BD-rate) of -3.66% with respect to our pretrained image codec. In particular, at low bitrate points, our proposed method results in a significant bitrate saving of -9.85%. Overall, our pretrained-and-then-finetuned system achieves -30.54% BD-rate over the state-of-the-art image/video codec Versatile Video Coding (VVC).
In this paper, we propose a novel image interpolation algorithm, which is formulated via combining both the local autoregressive (AR) model and the nonlocal adaptive 3-D sparse model as regularized constraints under the regularization framework. Esti mating the high-resolution image by the local AR regularization is different from these conventional AR models, which weighted calculates the interpolation coefficients without considering the rough structural similarity between the low-resolution (LR) and high-resolution (HR) images. Then the nonlocal adaptive 3-D sparse model is formulated to regularize the interpolated HR image, which provides a way to modify these pixels with the problem of numerical stability caused by AR model. In addition, a new Split-Bregman based iterative algorithm is developed to solve the above optimization problem iteratively. Experiment results demonstrate that the proposed algorithm achieves significant performance improvements over the traditional algorithms in terms of both objective quality and visual perception
Optimized for pixel fidelity metrics, images compressed by existing image codec are facing systematic challenges when used for visual analysis tasks, especially under low-bitrate coding. This paper proposes a visual analysis-motivated rate-distortion model for Versatile Video Coding (VVC) intra compression. The proposed model has two major contributions, a novel rate allocation strategy and a new distortion measurement model. We first propose the region of interest for machine (ROIM) to evaluate the degree of importance for each coding tree unit (CTU) in visual analysis. Then, a novel CTU-level bit allocation model is proposed based on ROIM and the local texture characteristics of each CTU. After an in-depth analysis of multiple distortion models, a visual analysis friendly distortion criteria is subsequently proposed by extracting deep feature of each coding unit (CU). To alleviate the problem of lacking spatial context information when calculating the distortion of each CU, we finally propose a multi-scale feature distortion (MSFD) metric using different neighboring pixels by weighting the extracted deep features in each scale. Extensive experimental results show that the proposed scheme could achieve up to 28.17% bitrate saving under the same analysis performance among several typical visual analysis tasks such as image classification, object detection, and semantic segmentation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا