ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the light collection using a new NaI(Tl)crystal encapsulation

73   0   0.0 ( 0 )
 نشر من قبل Chang Hyon Ha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NaI(Tl) crystals are used as particle detectors in a variety of rare-event search experiments because of their superb light-emission quality. The crystal light yield is generally high, above 10 photoelectrons per keV, and its emission spectrum is peaked around 400 nm, which matches well to the sensitive region of bialkali photocathode photomultiplier tubes. However, since NaI(Tl) crystals are hygroscopic, a sophisticated method of encapsulation has to be applied that prevents moisture from chemically attacking the crystal and thereby degrading the emission. In addition, operation with low energy thresholds, which is essential for a number of new phenomenon searches, is usually limited by the crystal light yield; in these cases higher light yields can translate into lower thresholds that improve the experimental sensitivity. Here we describe the development of an encapsulation technique that simplifies the overall design by attaching the photo sensors directly to the crystal so that light losses are minimized. The light yield of a NaI(Tl) crystal encapsulated with this technique was improved by more than 30%, and as many as 22 photoelectrons per keV have been measured. Consequently, the energy threshold can be lowered and the energy resolution improved. Detectors with this higher light yield are sensitive to events with sub-keV energies and well suited for low-mass dark matter particle searches and measurements of neutrino-nucleus coherent scattering.

قيم البحث

اقرأ أيضاً

Using a narrow band positron beam, the response of a large high-resolution NaI(Tl) crystal to an incident positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum.
The scintillation light output of a pure and a Thallium doped Sodium Iodide (NaI) crystal under irradiation with 5.486MeV alpha -particles has been measured over a temperature range from 1.7K to 300K. Estimates of the decay time constant at three sel ected temperatures are given. For pure NaI an increase in light yield towards low temperatures could be confirmed and measured at higher precision. For NaI(Tl) below 60K an increase in light output has been found.
72 - H.W.Joo , H.S.Park , J.H.Kim 2018
Scintillation crystals are commonly used for direct detection of weakly interacting massive particles (WIMPs), which are suitable candidates for a particle dark matter. It is well known that the scintillation light yields are different for electron r ecoil and nuclear recoil. To calibrate the energies of WIMP-induced nuclear recoil signals, the quenching factor (QF) needs to be measured, which is the light yield ratio of the nuclear recoil to electron recoil. Measurements of the QFs for Na and I recoils in a small (2 cm x 2 cm x 1.5 cm) NaI(Tl) crystal are performed with 2.43-MeV mono-energetic neutrons generated by deuteron-deuteron fusion. Depending on the scattering angle of the neutrons, the energies of the recoiled ions vary in the range of 9 - 152 keV for Na and 19 - 75 keV for I. The QFs of Na are measured at 9 points with values in the range of 10 - 23 % while those of I are measured at 4 points with values in the range of 4 - 6 %.
The Korea Invisible Mass Search (KIMS) collaboration has developed low-background NaI(Tl) crystals that are suitable for the direct detection of WIMP dark matter. With experience built on the KIMS-CsI programs, the KIMS-NaI experiment will consist of a 200~kg NaI(Tl) crystal array surrounded by layers of shielding structures and will be operated at the Yangyang underground laboratory. The goal is to provide an unambiguous test of the DAMA/LIBRAs annual modulation signature. Measurements of six prototype crystals show progress in the reduction of internal contaminations of radioisotopes. Based on our understanding of these measurements, we expect to achieve a background level in the final detector configuration that is less than 1~count/day/keV/kg for recoil energies around 2~keV. The annual modulation sensitivity for the KIMS-NaI experiment shows that an unambiguous 7$sigma$ test of the DAMA/LIBRA signature would be possible with a 600~kg$cdot$year exposure with this system.
410 - B.J. Park , J.J. Choe , J.S. Choi 2020
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-1 00 experiment has been operating with 106~kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61$-$0.78 kg) thallium-doped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا