ﻻ يوجد ملخص باللغة العربية
It is generally assumed that a condensate of paired fermions at equilibrium is characterized by a macroscopic wavefunction with a well-defined, immutable phase. In reality, all systems have a finite size and are prepared at non-zero temperature; the condensate has then a finite coherence time, even when the system is isolated in its evolution and the particle number $N$ is fixed. The loss of phase memory is due to interactions of the condensate with the excited modes that constitute a dephasing environment. This fundamental effect, crucial for applications using the condensate of pairs macroscopic coherence, was scarcely studied. We link the coherence time to the condensate phase dynamics, and we show with a microscopic theory that the time derivative of the condensate phase operator $hat{theta}_0$ is proportional to a chemical potential operator that we construct including both the pair-breaking and pair-motion excitation branches. In a single realization of energy $E$, $hat{theta}_0$ evolves at long times as $-2mu_{rm mc}(E)t/hbar$ where $mu_{rm mc}(E)$ is the microcanonical chemical potential; energy fluctuations from one realization to the other then lead to a ballistic spreading of the phase and to a Gaussian decay of the temporal coherence function with a characteristic time $propto N^{1/2}$. In the absence of energy fluctuations, the coherence time scales as $N$ due to the diffusive motion of $hat{theta}_0$. We propose a method to measure the coherence time with ultracold atoms, which we predict to be tens of milliseconds for the canonical ensemble unitary Fermi gas.
Due to atomic interactions and dispersion in the total atom number, the order parameter of a pair-condensed Fermi gas experiences a collapse in a time that we derive microscopically. As in the bosonic case, this blurring time depends on the derivativ
Strongly correlated systems are often associated with an underlying quantum critical point which governs their behavior in the finite temperature phase diagram. Their thermodynamical and transport properties arise from critical fluctuations and follo
We present an experimental study of a two component Fermi gas following an interaction quench into the superfluid phase. Starting with a weakly attractive gas in the normal phase, interactions are ramped to unitarity at a range of rates and we measur
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temper
We theoretically investigate a polarized dipolar Fermi gas in free expansion. The inter-particle dipolar interaction deforms phase-space distribution in trap and also in the expansion. We exactly predict the minimal quadrupole deformation in the expa