ﻻ يوجد ملخص باللغة العربية
An understanding of the hydrophobicity of complex heterogeneous molecular assemblies is crucial to characterize and predict interactions between biomolecules. As such, uncovering the subtleties of assembly processes hinges on an accurate classification of the relevant interfaces involved, and much effort has been spent on developing so-called hydrophobicity maps. In this work, we introduce a novel electrostatics-based mapping of aqueous interfaces that focuses on the collective, long-wavelength electrostatic response of water to the presence of nearby surfaces. In addition to distinguishing between hydrophobic and hydrophilic regions of heterogeneous surfaces, this electrostatic mapping can also differentiate between hydrophilic regions that polarize nearby waters in opposing directions. We therefore expect this approach to find use in predicting the location of possible water-mediated hydrophilic interactions, in addition to the more commonly emphasized hydrophobic interactions that can also be of significant importance.
Despite essentially identical crystallography and equilibrium structuring of water, nanoscopic channels composed of hexagonal boron nitride and graphite exhibit an order-of-magnitude difference in fluid slip. We investigate this difference using mole
Using Langevin dynamics simulations, we investigate the dynamics of a flexible polymer translocation into a confined area under a driving force through a nanopore. We choose an ellipsoidal shape for the confinement and consider the dependence of the
This paper studies numerically the Weeks-Chandler-Andersen (WCA) system, which is shown to obey hidden scale invariance with a density-scaling exponent that varies from below 5 to above 500. This unprecedented variation makes it advantageous to use t
We investigate the translocation of stiff polymers in the presence of binding particles through a nanopore by two-dimensional Langevin dynamics simulations. We find that the mean translocation time shows a minimum as a function of the binding energy
We present a theory for the interaction between motile particles in an elastic medium on a substrate, relying on two arguments: a moving particle creates a strikingly fore-aft asymmetric distortion in the elastic medium; this strain field reorients o