ﻻ يوجد ملخص باللغة العربية
Using Langevin dynamics simulations, we investigate the dynamics of a flexible polymer translocation into a confined area under a driving force through a nanopore. We choose an ellipsoidal shape for the confinement and consider the dependence of the asymmetry of the ellipsoid measured by the aspect ratio on the translocation time. Compared with an isotropic confinement (sphere), an anisotropic confinement (ellipsoid) with the same volume slows down the translocation, and the translocation time increases with increasing the aspect ratio of the ellipsoid. We further find that it takes different time for polymer translocation into the same ellipsoid through major-axis and minor-axis directions, depending on the average density of the whole chain in the ellipsoid, $phi$. For $phi$ lower than a critical value $phi_c$, the translocation through minor axis is faster, and vice versa. These complicated behaviors are interpreted by the degree of the confinement and anisotropic confinement induced folding of the translocated chain.
Using Langevin dynamics simulations, we investigate the influence of polymer-pore interactions on the dynamics of biopolymer translocation through nanopores. We find that an attractive interaction can significantly change the translocation dynamics.
Using analytical techniques and Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a narrow channel of width $R$ embedded in two dimensions, driven by a force proportional to the number of monomers in the channel
We investigate the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. An attractive interaction can greatly improve translocation probability. At the same time, it also increases translocation ti
We investigate the dynamics of DNA translocation through a nanopore driven by an external force using Langevin dynamics simulations in two dimensions (2D) to study how the translocation dynamics depend on the details of the DNA sequences. We consider
Using Langevin dynamics simulations, we investigate the dynamics of polymer translocation into a circular nanocontainer through a nanopore under a driving force $F$. We observe that the translocation probability initially increases and then saturates