ﻻ يوجد ملخص باللغة العربية
The solar flare on July 30, 2011 was of a modest X-ray class (M9.3), but it made a strong photospheric impact and produced a sunquake, observed with the Helioseismic and Magnetic Imager (HMI) on NASAs Solar Dynamics Observatory (SDO). In addition to the helioseismic waves (also observed with the SDO/AIA instrument), the flare caused a large expanding area of white-light emission and was accompanied by substantial restructuring of magnetic fields, leading to the rapid formation of a sunspot structure in the flare region. The flare produced no significant hard X-ray emission and no coronal mass ejection. This indicates that the flare energy release was mostly confined to the lower atmosphere. The absence of significant coronal mass ejection rules out magnetic rope eruption as a mechanism of helioseismic waves. We discuss the connectivity of the flare energy release with the electric currents dynamics and show the potential importance of high-speed plasma flows in the lower solar atmosphere during the flare energy release.
The Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides a new tool for the systematic observation of white-light flares, including Doppler and magnetic information as well as continuum. In our initial analysis
Chromospheric evaporation is observed as Doppler blueshift during solar flares. It plays one of key roles in dynamics and energetics of solar flares, however, its mechanism is still unknown. In this paper we present a detailed analysis of spatially-r
The standard model for eruptive flares has in the past few years been extended to 3D. It predicts typical J-shaped photospheric footprints of the coronal current layer, forming at similar locations as the Quasi-Separatrix Layers (QSLs). Such a morpho
In the standard model of solar flares, a large-scale reconnection current sheet is postulated as the central engine for powering the flare energy release and accelerating particles. However, where and how the energy release and particle acceleration
Multiple-ribbon flares are usually complex in their magnetic topologies and eruption mechanisms. In this paper, we investigate an X2.1 flare (SOL2015-03-11T16:22) that occurred in active region 12297 near the center of the solar disk by both potentia