ترغب بنشر مسار تعليمي؟ اضغط هنا

The Magnetic Topology and Eruption Mechanism of a Multiple-ribbon Flare

82   0   0.0 ( 0 )
 نشر من قبل Ye Qiu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple-ribbon flares are usually complex in their magnetic topologies and eruption mechanisms. In this paper, we investigate an X2.1 flare (SOL2015-03-11T16:22) that occurred in active region 12297 near the center of the solar disk by both potential and nonlinear force-free field models extrapolated with the data observed by the Helioseismic and Magnetic Imager (HMI) on board Solar Dynamics Observatory (SDO). We calculate the three-dimensional squashing degree distribution. The results reveal that there are two flux ropes in this active region, covered by a large scale hyperbolic flux tube (HFT), which is the intersection of quasi-separatrix layers with a null point embedded in it. When the background magnetic field diminishes due to the separation of the northwest dipole and the flux cancellation, the central flux rope rises up forming the two brightest central ribbons. It then squeezes the upper lying HFT structure to generate further brightenings. This very energetic flare with a complex shape is accompanied by a coronal mass ejection (CME). We adopt the simplified line-tied force-balance equation of the current ring model and assign the observed value of the decay index to the equation to simulate the acceleration profile of the CME in the early stage. It is found that the path with an inclination of $45^circ$ from radial best fits the profile of the actual acceleration.

قيم البحث

اقرأ أيضاً

We studied a circular-ribbon flare, SOL2014-12-17T04:51, with emphasis on its thermal evolution as determined by the Differential Emission Measure (DEM) inversion analysis of the extreme ultraviolet (EUV) images of the Atmospheric Imaging Assembly (A IA) instrument onboard the Solar Dynamics Observatory (SDO). Both temperature and emission measure start to rise much earlier than the flare, along with an eruption and formation of a hot halo over the fan structure. In the main flare phase, another set of ribbons forms inside the circular ribbon, and expands as expected for ribbons at the footpoints of a postflare arcade. An additional heating event further extends the decay phase, which is also characteristic of some eruptive flares. The basic magnetic configuration appears to be a fan-spine topology, rooted in a minority-polarity patch surrounded by majority-polarity flux. We suggest that reconnection at the null point begins well before the impulsive phase, when the null is distorted into a breakout current sheet, and that both flare and breakout reconnection are necessary in order to explain the subsequent local thermal evolution and the eruptive activities in this confined magnetic structure. Using local DEMs, we found a postflare temperature increase inside the fan surface, indicating that the so-called EUV late phase is due to continued heating in the flare loops.
98 - D. R. Graham , G. Cauzzi 2015
We present new results from the Interface Region Imaging Spectrograph showing the dynamic evolution of chromospheric evaporation and condensation in a flare ribbon, with the highest temporal and spatial resolution to date. IRIS observed the entire im pulsive phase of the X-class flare SOL2014-09-10T17:45 using a 9.4 second cadence `sit-and-stare mode. As the ribbon brightened successively at new positions along the slit, a unique impulsive phase evolution was observed for many tens of individual pixels in both coronal and chromospheric lines. Each activation of a new footpoint displays the same initial coronal up-flows of up to ~300 km/s, and chromospheric downflows up to 40 km/s. Although the coronal flows can be delayed by over 1 minute with respect to those in the chromosphere, the temporal evolution of flows is strikingly similar between all pixels, and consistent with predictions from hydrodynamic flare models. Given the large sample of independent footpoints, we conclude that each flaring pixel can be considered a prototypical, `elementary flare kernel.
We present RHESSI and TRACE observations of multiple flare activity that occurred in the active region NOAA 10656 over the period of two hours on 2004 August 18. Out of four successive flares, there were three events of class C while the final event was a major X1.8 solar eruptive flare. The events during the pre-eruption phase, i.e., before the X1.8 flare, are characterized by localized episodes of energy release occurring in the vicinity of an active region filament which produced intense heating along with non-thermal emission. A few minutes before the eruption, the filament undergoes an activation phase during which it slowly rises with a speed of ~12 km/s. The filament eruption is accompanied with an X1.8 flare during which multiple HXR bursts are observed up to 100-300 keV energies. We observe a bright and elongated coronal structure simultaneously in E(UV) and 50-100 keV HXR images underneath the expanding filament during the period of HXR bursts which provides strong evidence for ongoing magnetic reconnection. This phase is accompanied with very high plasma temperatures of ~31 MK and followed by the detachment of the prominence from the solar source region. From the location, timing, strength, and spectrum of HXR emission, we conclude that the prominence eruption is driven by the distinct events of magnetic reconnection occurring in a current sheet formed below the erupting filament. These multi-wavelength observations also suggest that the localized magnetic reconnections associated with different evolutionary stages of the filament in the pre-eruption phase play a crucial role in destabilizing the filament by a tether-cutting process leading to large-scale eruption and X-class flare.
Solar eruptions are spectacular magnetic explosions in the Suns corona, and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies that may not generally exist in the pre-eruption source region of corona . Here, using fully three-dimensional magnetohydrodynamic simulations with high accuracy, we show that solar eruptions can be initiated in a single bipolar configuration with no additional special topology. Through photospheric shearing motion alone, an electric current sheet forms in the highly sheared core field of the magnetic arcade during its quasi-static evolution. Once magnetic reconnection sets in, the whole arcade is expelled impulsively, forming a fast-expanding twisted flux rope with a highly turbulent reconnecting region underneath. The simplicity and efficacy of this scenario argue strongly for its fundamental importance in the initiation of solar eruptions.
The sites of chromospheric excitation during solar flares are marked by extended extreme ultraviolet ribbons and hard X-ray footpoints. The standard interpretation is that these are the result of heating and bremsstrahlung emission from non-thermal e lectrons precipitating from the corona. We examine this picture using multi-wavelength observations of the early phase of an M-class flare SOL2010-08-07T18:24. We aim to determine the properties of the heated plasma in the flare ribbons, and to understand the partition of the power input into radiative and conductive losses. Using GOES, SDO/EVE, SDO/AIA and RHESSI we measure the temperature, emission measure and differential emission measure of the flare ribbons, and deduce approximate density values. The non-thermal emission measure, and the collisional thick target energy input to the ribbons are obtained from RHESSI using standard methods. We deduce the existence of a substantial amount of plasma at 10 MK in the flare ribbons, during the pre-impulsive and early-impulsive phase of the flare. The average column emission measure of this hot component is a few times 10^28/cm^5, and we can calculate that its predicted conductive losses dominate its measured radiative losses. If the power input to the hot ribbon plasma is due to collisional energy deposition by an electron beam from the corona then a low-energy cutoff of around 5 keV is necessary to balance the conductive losses, implying a very large electron energy content. Independent of the standard collisional thick-target electron beam interpretation, the observed non-thermal X-rays can be provided if one electron in 10^3 - 10^4 in the 10 MK (1 keV) ribbon plasma has an energy above 10 keV. We speculate that this could arise if a non-thermal tail is generated in the ribbon plasma which is being heated by other means, for example by waves or turbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا