ﻻ يوجد ملخص باللغة العربية
In de Sitter ambient space formalism, the linear gravity can be written in terms of a minimally coupled scalar field and a polarization tensor. In this formalism, the massless minimally coupled scalar field can be quantized on Bunch-Davies vacuum state, that preserves the de Sitter invariance, the analyticity and removes the infrared divergence. The de Sitter quantum linear gravity is then constructed on Bunch-Davies vacuum state, which is also covariant, analytic and free of any infrared divergences. We will conclude that the unique Bunch-Davies vacuum state can be used adequately to constructing the quantum field theory in de Sitter universe.
Application of Krein space quantization to the linear gravity in de Sitter space-time have constructed on Gupta-Bleuler vacuum state, resulting in removal of infrared divergence and preserving de Sitter covariant. By pursuing this path, the non uniqu
We give in this paper an explicit construction of the covariant quantization of the rank-two massless tensor field on de Sitter space (linear covariant quantum gravity on a de Sitter background). The main ingredient of the construction is an indecomp
We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions of the well-known positive-frequency mo
By making use of the background field method, the one-loop quantization for Euclidean Einstein-Weyl quadratic gravity model on the de Sitter universe is investigated. Using generalized zeta function regularization, the on-shell and off-shell one-loop
Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obs