ترغب بنشر مسار تعليمي؟ اضغط هنا

Representing the Vacuum Polarization on de Sitter

191   0   0.0 ( 0 )
 نشر من قبل Richard Woodard
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Katie E. Leonard




اسأل ChatGPT حول البحث

Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obscure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.



قيم البحث

اقرأ أيضاً

In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fo ck de Sitter invariant vacuum of Kirsten and Garriga. Using a causal set discretisation of a slab of 2d and 4d de Sitter spacetime, we find the causal set SJ vacuum for a range of masses $m geq 0$ of the free scalar field. While our simulations are limited to a finite volume slab of global de Sitter spacetime, they show good convergence as the volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure from the continuum Motolla-Allen $alpha$-vacua. Moreover, the causal set SJ vacuum is well-defined for both the minimally coupled massless $m=0$ and the conformally coupled massless $m=m_c$ cases. This is at odds with earlier work on the continuum de Sitter SJ vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses. Our results hint at an important tension between the discrete and continuum behaviour of the SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the Mottola-Allen $alpha$-vacua even for $m>0$.
199 - Katie E. Leonard 2014
We derive a noncovariant but simple representation for the self-energy of a conformally transformed graviton field on the cosmological patch of de Sitter. Our representation involves four structure functions, as opposed to the two that would be neces sary for a manifestly de Sitter invariant representation. We work out what the four structure functions are for the one loop correction due to a massless, minimally coupled scalar. And we employ the result to work out what happens to dynamical gravitons.
We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions of the well-known positive-frequency mo des in the conformally-flat chart. We discuss in detail how these modes are defined globally in the two static charts and the region in their future. The global structure of these solutions leads to the well-known description of the Bunch-Davies vacuum state as an entangled state. Our results are expected to be useful not only for studying the thermal properties in the vacuum fluctuations in de Sitter spacetime but also for understanding the nonlocal properties of the vacuum state.
We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe, clarifying and highlighting several conceptual and technical issues. (A) We show that one can map the dynamics of (1) a massless scalar field in a universe with power law expansion to (2) a massive scalar field in the de Sitter spacetime, which allows us to understand several features of either system and clarifies several issues related to the massless limit. (B) We obtain a useful integral representation for the Euclidean Greens function for the de Sitter spacetime, by relating it to the solution of a hypothetical electrostatic problem in five dimensions. This is helpful in the study of several relevant limits. (C) We recover that in any Friedmann universe, sourced by a negative pressure fluid, the Wightman function for a massless scalar field is divergent. This shows that the divergence of Wightman function for the massless field in the de Sitter spacetime is just a special, limiting, case of this general phenomenon. (D) We provide a generally covariant procedure for defining the power spectrum of vacuum fluctuations in terms of the different Killing vectors present in the spacetime. This allows one to study the interplay of the choice of vacuum state and the nature of the power spectrum in different coordinate systems, in the de Sitter universe, in a unified manner. (Truncated Abstract; see the paper for full Abstract.)
It is known that the perturbative instability of tensor excitations in higher derivative gravity may not take place if the initial frequency of the gravitational waves are below the Planck threshold. One can assume that this is a natural requirement if the cosmological background is sufficiently mild, since in this case the situation is qualitatively close to the free gravitational wave in flat space. Here, we explore the opposite situation and consider the effect of a very far from Minkowski radiation-dominated or de Sitter cosmological background with a large Hubble rate, e.g., typical of an inflationary period. It turns out that, then, for initial Planckian or even trans-Planckian frequencies, the instability is rapidly suppressed by the very fast expansion of the universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا