ترغب بنشر مسار تعليمي؟ اضغط هنا

Universal asymptotic behavior in nonlinear systems driven by a two-frequency forcing

101   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Casado-Pascual
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the time-dependent behavior of a nonlinear system driven by a two-frequency forcing. By using a non-perturbative approach, we are able to derive an asymptotic expression, valid in the long-time limit, for the time average of the output variable which describes the response of the system. We identify several universal features of the asymptotic response of the system, which are independent of the details of the model. In particular, we determine an asymptotic expression for the width of the resonance observed by keeping one frequency fixed, and varying the other one. We show that this width is smaller than the usually assumed Fourier width by a factor determined by the two driving frequencies, and independent of the model system parameters. Additional general features can also be identified depending on the specific symmetry properties of the system. Our results find direct application in the study of sub-Fourier signal processing with nonlinear systems.



قيم البحث

اقرأ أيضاً

121 - D. Nickelsen , A. Engel 2012
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asympt otics of work distributions in Langevin systems to an one-dimensional model of single-molecule force spectroscopy. The results are in excellent agreement with numerical simulations, even in the centre of the distributions. We compare our findings with a recent proposal for an universal form of the asymptotics of work distributions in single-molecule experiments.
A novel mechanism of asymmetric frequency conversion is investigated in nonlinear dispersive devices driven parametrically with a biharmonic pump. When the relative phase between the first and second harmonics combined in a two-tone pump is appropria tely tuned, nonreciprocal frequency conversion, either upward or downward, can occur. Full directionality and efficiency of the conversion process is possible, provided that the distribution of pump power over the harmonics is set correctly. While this asymmetric conversion effect is generic, we describe its practical realization in a model system consisting of a current-biased, resistively-shunted Josephson junction (RSJ). Here, the multiharmonic Josephson oscillations, generated internally from the static current bias, provide the pump drive.
The theoretical treatment of quasi-periodically driven quantum systems is complicated by the inapplicability of the Floquet theorem, which requires strict periodicity. In this work we consider a quantum system driven by a bi-harmonic driving and exam ine its asymptotic long-time limit, the limit in which features distinguishing systems with periodic and quasi-periodic driving occur. Also, in the classical case this limit is known to exhibit universal scaling, independent of the system details, with the systems reponse under quasi-periodic driving being described in terms of nearby periodically driven system results. We introduce a theoretical framework appropriate for the treatment of the quasi-periodically driven quantum system in the long-time limit, and derive an expression, based on Floquet states for a periodically driven system approximating the different steps of the time evolution, for the asymptotic scaling of relevant quantities for the system at hand. These expressions are tested numerically, finding excellent agreement for the finite-time average velocity in a prototypical quantum ratchet consisting of a space-symmetric potential and a time-asymmetric oscillating force.
We analyse the relationship between irrationality and quasiperiodicity in nonlinear driven systems. To that purpose we consider a nonlinear system whose steady-state response is very sensitive to the periodic or quasiperiodic character of the input s ignal. In the infinite time limit, an input signal consisting of two incommensurate frequencies will be recognised by the system as quasiperiodic. We show that this is in general not true in the case of finite interaction times. An irrational ratio of the driving frequencies of the input signal is not sufficient for it to be recognised by the nonlinear system as quasiperiodic, resulting in observations which may differ by several orders of magnitude from the expected quasiperiodic behavior. Thus, the system response depends on the nature of the irrational ratio, as well as the observation time. We derive a condition for the input signal to be identified by the system as quasiperiodic. Such a condition also takes into account the sub-Fourier response of the nonlinear system.
We investigate the low-temperature behavior of two-dimensional (2D) RP$^{N-1}$ models, characterized by a global O($N$) symmetry and a local ${mathbb Z}_2$ symmetry. For $N=3$ we perform large-scale simulations of four different 2D lattice models: tw o standard lattice models and two different constrained models. We also consider a constrained mixed O(3)-RP$^2$ model for values of the parameters such that vector correlations are always disordered. We find that all these models show the same finite-size scaling (FSS) behavior, and therefore belong to the same universality class. However, these FSS curves differ from those computed in the 2D O(3) $sigma$ model, suggesting the existence of a distinct 2D RP$^2$ universality class. We also performed simulations for $N=4$, and the corresponding FSS results also support the existence of an RP$^3$ universality class, different from the O(4) one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا