ﻻ يوجد ملخص باللغة العربية
The theoretical treatment of quasi-periodically driven quantum systems is complicated by the inapplicability of the Floquet theorem, which requires strict periodicity. In this work we consider a quantum system driven by a bi-harmonic driving and examine its asymptotic long-time limit, the limit in which features distinguishing systems with periodic and quasi-periodic driving occur. Also, in the classical case this limit is known to exhibit universal scaling, independent of the system details, with the systems reponse under quasi-periodic driving being described in terms of nearby periodically driven system results. We introduce a theoretical framework appropriate for the treatment of the quasi-periodically driven quantum system in the long-time limit, and derive an expression, based on Floquet states for a periodically driven system approximating the different steps of the time evolution, for the asymptotic scaling of relevant quantities for the system at hand. These expressions are tested numerically, finding excellent agreement for the finite-time average velocity in a prototypical quantum ratchet consisting of a space-symmetric potential and a time-asymmetric oscillating force.
We study the stroboscopic dynamics of a spin-$S$ object subjected to $delta$-function kicking in the transverse magnetic field which is generated following the Fibonacci sequence. The corresponding classical Hamiltonian map is constructed in the larg
The asymptotic tails of the probability distributions of thermodynamic quantities convey important information about the physics of nanoscopic systems driven out of equilibrium. We apply a recently proposed method to analytically determine the asympt
We examine the time-dependent behavior of a nonlinear system driven by a two-frequency forcing. By using a non-perturbative approach, we are able to derive an asymptotic expression, valid in the long-time limit, for the time average of the output var
In this review we present some of the work done in India in the area of driven and out-of-equilibrium systems with topological phases. After presenting some well-known examples of topological systems in one and two dimensions, we discuss the effects
We reveal a continuous dynamical heating transition between a prethermal and an infinite-temperature stage in a clean, chaotic periodically driven classical spin chain. The transition time is a steep exponential function of the drive frequency, showi