ﻻ يوجد ملخص باللغة العربية
Quantum optomechanics exploits radiation pressure effects inside optical cavities. It can be used to generate quantum states of the center-of-mass motion of massive mechanical objects, thereby opening up a new parameter regime for macroscopic quantum experiments. The challenging experimental conditions to maintain and observe quantum coherence for increasingly large objects may require a space environment rather than an earth-bound laboratory. We introduce a possible space experiment to study the wave-packet expansion of massive objects. This forms the basis for Schrodinger cat states of unprecedented size and mass.
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We ill
In addition to being a very interesting quantum phenomenon, Schrodinger cat swapping has the potential for application in the preparation of quantum states that could be used in metrology and other quantum processing. We study in detail the effects o
We discuss general properties of the equilibrium state of parametric down-conversion in superconducting quantum circuits with detunings and Kerr anharmonicities, in the strongly nonlinear regime. By comparing moments of the steady state and those of
The iconic Schrodingers cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classic
We present a new analysis framework called Correlation Analysis Tool using the Schrodinger equation (CATS) which computes the two-particle femtoscopy correlation function $C(k)$, with $k$ being the relative momentum for the particle pair. Any local i